Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022415429> ?p ?o ?g. }
- W3022415429 endingPage "81875" @default.
- W3022415429 startingPage "81864" @default.
- W3022415429 abstract "Principal component analysis (PCA) is a widely used unsupervised method for dimensionality reduction. The kernelized version is called kernel principal component analysis (KPCA), which can capture the nonlinear data structure. KPCA is derived from the Gram matrix, which is not robust when outliers exist in the data. This may yield the principal axis in the feature space deviated by outliers, leading to misinterpretation of the principal components. In this paper, we propose a robust method for KPCA with a reformulation in Euclidean space to construct a robust KPCA method, where an error measurement is introduced into the loss function, and l 2,1-regularization is added to the loss function. The idea of l 2,1-regularization of the proposed method is motivated by sparse PCA via variable projection. However, because orthogonality is not satisfied in the proposed method, orthonormal bases are obtained by using the Gram-Schmidt orthonormalization process. In the experiments, a toy example and real data are used for outlier detection to verify the method's performance and effectiveness. In the toy example, the proposed method reduces the influence of outliers and detects more outliers than KPCA. For the real data, the proposed method improves detection in comparison to other existing methods." @default.
- W3022415429 created "2020-05-13" @default.
- W3022415429 creator A5059015629 @default.
- W3022415429 creator A5082578225 @default.
- W3022415429 date "2020-01-01" @default.
- W3022415429 modified "2023-09-24" @default.
- W3022415429 title "Robust Kernel Principal Component Analysis With ℓ<sub>2,1</sub>-Regularized Loss Minimization" @default.
- W3022415429 cites W151981251 @default.
- W3022415429 cites W1587720067 @default.
- W3022415429 cites W1594738692 @default.
- W3022415429 cites W1972832829 @default.
- W3022415429 cites W1975900269 @default.
- W3022415429 cites W1983094140 @default.
- W3022415429 cites W1984421104 @default.
- W3022415429 cites W1986280275 @default.
- W3022415429 cites W1989267105 @default.
- W3022415429 cites W1992633833 @default.
- W3022415429 cites W1993693225 @default.
- W3022415429 cites W1994505190 @default.
- W3022415429 cites W1998925295 @default.
- W3022415429 cites W2007104540 @default.
- W3022415429 cites W2008241367 @default.
- W3022415429 cites W2019533369 @default.
- W3022415429 cites W2020797285 @default.
- W3022415429 cites W2027982384 @default.
- W3022415429 cites W2048430744 @default.
- W3022415429 cites W2054834816 @default.
- W3022415429 cites W2063016434 @default.
- W3022415429 cites W2074058676 @default.
- W3022415429 cites W2078473970 @default.
- W3022415429 cites W2092101233 @default.
- W3022415429 cites W2097004253 @default.
- W3022415429 cites W2098884960 @default.
- W3022415429 cites W2103914106 @default.
- W3022415429 cites W2113713615 @default.
- W3022415429 cites W2126607811 @default.
- W3022415429 cites W2133303449 @default.
- W3022415429 cites W2140095548 @default.
- W3022415429 cites W2145962650 @default.
- W3022415429 cites W2149803014 @default.
- W3022415429 cites W2409083522 @default.
- W3022415429 cites W2604895180 @default.
- W3022415429 cites W2753209075 @default.
- W3022415429 cites W2789007121 @default.
- W3022415429 cites W2899003851 @default.
- W3022415429 cites W2921315455 @default.
- W3022415429 cites W2974861117 @default.
- W3022415429 cites W2999814961 @default.
- W3022415429 cites W3016722631 @default.
- W3022415429 cites W4213009331 @default.
- W3022415429 cites W4229530126 @default.
- W3022415429 cites W4241492945 @default.
- W3022415429 cites W4242010931 @default.
- W3022415429 cites W4256141317 @default.
- W3022415429 doi "https://doi.org/10.1109/access.2020.2990493" @default.
- W3022415429 hasPublicationYear "2020" @default.
- W3022415429 type Work @default.
- W3022415429 sameAs 3022415429 @default.
- W3022415429 citedByCount "3" @default.
- W3022415429 countsByYear W30224154292020 @default.
- W3022415429 countsByYear W30224154292021 @default.
- W3022415429 countsByYear W30224154292023 @default.
- W3022415429 crossrefType "journal-article" @default.
- W3022415429 hasAuthorship W3022415429A5059015629 @default.
- W3022415429 hasAuthorship W3022415429A5082578225 @default.
- W3022415429 hasBestOaLocation W30224154291 @default.
- W3022415429 hasConcept C104317684 @default.
- W3022415429 hasConcept C11413529 @default.
- W3022415429 hasConcept C114614502 @default.
- W3022415429 hasConcept C121332964 @default.
- W3022415429 hasConcept C122280245 @default.
- W3022415429 hasConcept C12267149 @default.
- W3022415429 hasConcept C126255220 @default.
- W3022415429 hasConcept C147764199 @default.
- W3022415429 hasConcept C154945302 @default.
- W3022415429 hasConcept C168167062 @default.
- W3022415429 hasConcept C182335926 @default.
- W3022415429 hasConcept C185592680 @default.
- W3022415429 hasConcept C27438332 @default.
- W3022415429 hasConcept C2777749129 @default.
- W3022415429 hasConcept C33923547 @default.
- W3022415429 hasConcept C41008148 @default.
- W3022415429 hasConcept C55493867 @default.
- W3022415429 hasConcept C63479239 @default.
- W3022415429 hasConcept C74193536 @default.
- W3022415429 hasConcept C74887250 @default.
- W3022415429 hasConcept C97355855 @default.
- W3022415429 hasConceptScore W3022415429C104317684 @default.
- W3022415429 hasConceptScore W3022415429C11413529 @default.
- W3022415429 hasConceptScore W3022415429C114614502 @default.
- W3022415429 hasConceptScore W3022415429C121332964 @default.
- W3022415429 hasConceptScore W3022415429C122280245 @default.
- W3022415429 hasConceptScore W3022415429C12267149 @default.
- W3022415429 hasConceptScore W3022415429C126255220 @default.
- W3022415429 hasConceptScore W3022415429C147764199 @default.
- W3022415429 hasConceptScore W3022415429C154945302 @default.
- W3022415429 hasConceptScore W3022415429C168167062 @default.
- W3022415429 hasConceptScore W3022415429C182335926 @default.