Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022435406> ?p ?o ?g. }
- W3022435406 endingPage "33" @default.
- W3022435406 startingPage "1" @default.
- W3022435406 abstract "The fast spreading of fake news stories on social media can cause inestimable social harm. Developing effective methods to detect them early is of paramount importance. A major challenge of fake news early detection is fully utilizing the limited data observed at the early stage of news propagation and then learning useful patterns from it for identifying fake news. In this article, we propose a novel deep neural network to detect fake news early. It has three novel components: (1) a status-sensitive crowd response feature extractor that extracts both text features and user features from combinations of users’ text response and their corresponding user profiles, (2) a position-aware attention mechanism that highlights important user responses at specific ranking positions, and (3) a multi-region mean-pooling mechanism to perform feature aggregation based on multiple window sizes. Experimental results on two real-world datasets demonstrate that our proposed model can detect fake news with greater than 90% accuracy within 5 minutes after it starts to spread and before it is retweeted 50 times, which is significantly faster than state-of-the-art baselines. Most importantly, our approach requires only 10% labeled fake news samples to achieve this effectiveness under PU-Learning settings." @default.
- W3022435406 created "2020-05-13" @default.
- W3022435406 creator A5023363049 @default.
- W3022435406 creator A5034903168 @default.
- W3022435406 date "2020-05-05" @default.
- W3022435406 modified "2023-10-16" @default.
- W3022435406 title "FNED" @default.
- W3022435406 cites W1526711923 @default.
- W3022435406 cites W1570381501 @default.
- W3022435406 cites W1593505700 @default.
- W3022435406 cites W1638051351 @default.
- W3022435406 cites W1961987884 @default.
- W3022435406 cites W1975594555 @default.
- W3022435406 cites W1996665163 @default.
- W3022435406 cites W2031213082 @default.
- W3022435406 cites W2032897813 @default.
- W3022435406 cites W2038553416 @default.
- W3022435406 cites W2041614930 @default.
- W3022435406 cites W2051405935 @default.
- W3022435406 cites W2051681257 @default.
- W3022435406 cites W2084591134 @default.
- W3022435406 cites W2128509431 @default.
- W3022435406 cites W2142869398 @default.
- W3022435406 cites W2201399812 @default.
- W3022435406 cites W2247790283 @default.
- W3022435406 cites W2286590041 @default.
- W3022435406 cites W2324763723 @default.
- W3022435406 cites W2398287226 @default.
- W3022435406 cites W2507189310 @default.
- W3022435406 cites W2516338333 @default.
- W3022435406 cites W2524699934 @default.
- W3022435406 cites W2531862055 @default.
- W3022435406 cites W2535287707 @default.
- W3022435406 cites W2547213877 @default.
- W3022435406 cites W2567149662 @default.
- W3022435406 cites W2577716227 @default.
- W3022435406 cites W2606418518 @default.
- W3022435406 cites W2609512471 @default.
- W3022435406 cites W2612179682 @default.
- W3022435406 cites W2624010645 @default.
- W3022435406 cites W2737907513 @default.
- W3022435406 cites W2741297262 @default.
- W3022435406 cites W2742144412 @default.
- W3022435406 cites W2742330194 @default.
- W3022435406 cites W2754637385 @default.
- W3022435406 cites W2766462585 @default.
- W3022435406 cites W2790166049 @default.
- W3022435406 cites W2798787718 @default.
- W3022435406 cites W2809476703 @default.
- W3022435406 cites W2810026022 @default.
- W3022435406 cites W2897757923 @default.
- W3022435406 cites W2903981179 @default.
- W3022435406 cites W2912078280 @default.
- W3022435406 cites W2919115771 @default.
- W3022435406 cites W2922175554 @default.
- W3022435406 cites W2963523292 @default.
- W3022435406 cites W2963704432 @default.
- W3022435406 cites W3014004612 @default.
- W3022435406 cites W3101890897 @default.
- W3022435406 doi "https://doi.org/10.1145/3386253" @default.
- W3022435406 hasPublicationYear "2020" @default.
- W3022435406 type Work @default.
- W3022435406 sameAs 3022435406 @default.
- W3022435406 citedByCount "68" @default.
- W3022435406 countsByYear W30224354062020 @default.
- W3022435406 countsByYear W30224354062021 @default.
- W3022435406 countsByYear W30224354062022 @default.
- W3022435406 countsByYear W30224354062023 @default.
- W3022435406 crossrefType "journal-article" @default.
- W3022435406 hasAuthorship W3022435406A5023363049 @default.
- W3022435406 hasAuthorship W3022435406A5034903168 @default.
- W3022435406 hasConcept C117978034 @default.
- W3022435406 hasConcept C119857082 @default.
- W3022435406 hasConcept C127413603 @default.
- W3022435406 hasConcept C136764020 @default.
- W3022435406 hasConcept C138885662 @default.
- W3022435406 hasConcept C154945302 @default.
- W3022435406 hasConcept C17744445 @default.
- W3022435406 hasConcept C189430467 @default.
- W3022435406 hasConcept C199539241 @default.
- W3022435406 hasConcept C21880701 @default.
- W3022435406 hasConcept C23123220 @default.
- W3022435406 hasConcept C2776401178 @default.
- W3022435406 hasConcept C2777363581 @default.
- W3022435406 hasConcept C2778751112 @default.
- W3022435406 hasConcept C41008148 @default.
- W3022435406 hasConcept C41895202 @default.
- W3022435406 hasConcept C518677369 @default.
- W3022435406 hasConcept C70437156 @default.
- W3022435406 hasConceptScore W3022435406C117978034 @default.
- W3022435406 hasConceptScore W3022435406C119857082 @default.
- W3022435406 hasConceptScore W3022435406C127413603 @default.
- W3022435406 hasConceptScore W3022435406C136764020 @default.
- W3022435406 hasConceptScore W3022435406C138885662 @default.
- W3022435406 hasConceptScore W3022435406C154945302 @default.
- W3022435406 hasConceptScore W3022435406C17744445 @default.
- W3022435406 hasConceptScore W3022435406C189430467 @default.
- W3022435406 hasConceptScore W3022435406C199539241 @default.