Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022493227> ?p ?o ?g. }
- W3022493227 endingPage "9" @default.
- W3022493227 startingPage "1" @default.
- W3022493227 abstract "This study investigates an image recognition system for the identification and classification of waste electrical and electronic equipment from photos. Its main purpose is to facilitate information exchange regarding the waste to be collected from individuals or from waste collection points, thereby exploiting the wide acceptance and use of smartphones. To improve waste collection planning, individuals would photograph the waste item and upload the image to the waste collection company server, where it would be recognized and classified automatically. The proposed system can be operated on a server or through a mobile app. A novel method of classification and identification using neural networks is proposed for image analysis: a deep learning convolutional neural network (CNN) was applied to classify the type of e-waste, and a faster region-based convolutional neural network (R-CNN) was used to detect the category and size of the waste equipment in the images. The recognition and classification accuracy of the selected e-waste categories ranged from 90 to 97%. After the size and category of the waste is automatically recognized and classified from the uploaded images, e-waste collection companies can prepare a collection plan by assigning a sufficient number of vehicles and payload capacity for a specific e-waste project." @default.
- W3022493227 created "2020-05-13" @default.
- W3022493227 creator A5040038047 @default.
- W3022493227 creator A5063759350 @default.
- W3022493227 date "2020-05-01" @default.
- W3022493227 modified "2023-10-16" @default.
- W3022493227 title "Application of deep learning object classifier to improve e-waste collection planning" @default.
- W3022493227 cites W1672580646 @default.
- W3022493227 cites W1934410531 @default.
- W3022493227 cites W2001490501 @default.
- W3022493227 cites W2012635884 @default.
- W3022493227 cites W2021738599 @default.
- W3022493227 cites W2037134653 @default.
- W3022493227 cites W2067890355 @default.
- W3022493227 cites W2080551803 @default.
- W3022493227 cites W2102605133 @default.
- W3022493227 cites W2105233986 @default.
- W3022493227 cites W2115985319 @default.
- W3022493227 cites W2117539524 @default.
- W3022493227 cites W2269011705 @default.
- W3022493227 cites W2288377653 @default.
- W3022493227 cites W2479866714 @default.
- W3022493227 cites W2538904044 @default.
- W3022493227 cites W2614258573 @default.
- W3022493227 cites W2618530766 @default.
- W3022493227 cites W2622112001 @default.
- W3022493227 cites W2796505778 @default.
- W3022493227 cites W2797079077 @default.
- W3022493227 cites W2799656406 @default.
- W3022493227 cites W2799964769 @default.
- W3022493227 cites W2808614768 @default.
- W3022493227 cites W2888000599 @default.
- W3022493227 cites W2888923620 @default.
- W3022493227 cites W2896027496 @default.
- W3022493227 cites W2897042087 @default.
- W3022493227 cites W2900991105 @default.
- W3022493227 cites W2919115771 @default.
- W3022493227 cites W2925272538 @default.
- W3022493227 cites W4253463656 @default.
- W3022493227 cites W591591746 @default.
- W3022493227 cites W639708223 @default.
- W3022493227 doi "https://doi.org/10.1016/j.wasman.2020.04.041" @default.
- W3022493227 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32361385" @default.
- W3022493227 hasPublicationYear "2020" @default.
- W3022493227 type Work @default.
- W3022493227 sameAs 3022493227 @default.
- W3022493227 citedByCount "95" @default.
- W3022493227 countsByYear W30224932272020 @default.
- W3022493227 countsByYear W30224932272021 @default.
- W3022493227 countsByYear W30224932272022 @default.
- W3022493227 countsByYear W30224932272023 @default.
- W3022493227 crossrefType "journal-article" @default.
- W3022493227 hasAuthorship W3022493227A5040038047 @default.
- W3022493227 hasAuthorship W3022493227A5063759350 @default.
- W3022493227 hasBestOaLocation W30224932271 @default.
- W3022493227 hasConcept C105795698 @default.
- W3022493227 hasConcept C108583219 @default.
- W3022493227 hasConcept C115961682 @default.
- W3022493227 hasConcept C116834253 @default.
- W3022493227 hasConcept C127413603 @default.
- W3022493227 hasConcept C133462117 @default.
- W3022493227 hasConcept C134066672 @default.
- W3022493227 hasConcept C136764020 @default.
- W3022493227 hasConcept C154945302 @default.
- W3022493227 hasConcept C158379750 @default.
- W3022493227 hasConcept C186967261 @default.
- W3022493227 hasConcept C33923547 @default.
- W3022493227 hasConcept C38652104 @default.
- W3022493227 hasConcept C41008148 @default.
- W3022493227 hasConcept C50644808 @default.
- W3022493227 hasConcept C521786372 @default.
- W3022493227 hasConcept C548081761 @default.
- W3022493227 hasConcept C59822182 @default.
- W3022493227 hasConcept C71901391 @default.
- W3022493227 hasConcept C75294576 @default.
- W3022493227 hasConcept C75779659 @default.
- W3022493227 hasConcept C77088390 @default.
- W3022493227 hasConcept C81363708 @default.
- W3022493227 hasConcept C86803240 @default.
- W3022493227 hasConcept C95623464 @default.
- W3022493227 hasConceptScore W3022493227C105795698 @default.
- W3022493227 hasConceptScore W3022493227C108583219 @default.
- W3022493227 hasConceptScore W3022493227C115961682 @default.
- W3022493227 hasConceptScore W3022493227C116834253 @default.
- W3022493227 hasConceptScore W3022493227C127413603 @default.
- W3022493227 hasConceptScore W3022493227C133462117 @default.
- W3022493227 hasConceptScore W3022493227C134066672 @default.
- W3022493227 hasConceptScore W3022493227C136764020 @default.
- W3022493227 hasConceptScore W3022493227C154945302 @default.
- W3022493227 hasConceptScore W3022493227C158379750 @default.
- W3022493227 hasConceptScore W3022493227C186967261 @default.
- W3022493227 hasConceptScore W3022493227C33923547 @default.
- W3022493227 hasConceptScore W3022493227C38652104 @default.
- W3022493227 hasConceptScore W3022493227C41008148 @default.
- W3022493227 hasConceptScore W3022493227C50644808 @default.
- W3022493227 hasConceptScore W3022493227C521786372 @default.
- W3022493227 hasConceptScore W3022493227C548081761 @default.
- W3022493227 hasConceptScore W3022493227C59822182 @default.