Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022497564> ?p ?o ?g. }
- W3022497564 abstract "Abstract Herein, we aim to assess mortality risk prediction in peritoneal dialysis patients using machine-learning algorithms for proper prognosis prediction. A total of 1,730 peritoneal dialysis patients in the CRC for ESRD prospective cohort from 2008 to 2014 were enrolled in this study. Classification algorithms were used for prediction of N-year mortality including neural network. The survival hazard ratio was presented by machine-learning algorithms using survival statistics and was compared to conventional algorithms. A survival-tree algorithm presented the most accurate prediction model and outperformed a conventional method such as Cox regression (concordance index 0.769 vs 0.745). Among various survival decision-tree models, the modified Charlson Comorbidity index (mCCI) was selected as the best predictor of mortality. If peritoneal dialysis patients with high mCCI (>4) were aged ≥70.5 years old, the survival hazard ratio was predicted as 4.61 compared to the overall study population. Among the various algorithm using longitudinal data, the AUC value of logistic regression was augmented at 0.804. In addition, the deep neural network significantly improved performance to 0.841. We propose machine learning-based final model, mCCI and age were interrelated as notable risk factors for mortality in Korean peritoneal dialysis patients." @default.
- W3022497564 created "2020-05-13" @default.
- W3022497564 creator A5005291043 @default.
- W3022497564 creator A5010247077 @default.
- W3022497564 creator A5022646032 @default.
- W3022497564 creator A5028024742 @default.
- W3022497564 creator A5032124306 @default.
- W3022497564 creator A5033449275 @default.
- W3022497564 creator A5039562436 @default.
- W3022497564 creator A5044459999 @default.
- W3022497564 creator A5046192646 @default.
- W3022497564 creator A5052408592 @default.
- W3022497564 creator A5081381297 @default.
- W3022497564 creator A5083042968 @default.
- W3022497564 creator A5088003950 @default.
- W3022497564 date "2020-05-04" @default.
- W3022497564 modified "2023-10-01" @default.
- W3022497564 title "Prediction of the Mortality Risk in Peritoneal Dialysis Patients using Machine Learning Models: A Nation-wide Prospective Cohort in Korea" @default.
- W3022497564 cites W1513560078 @default.
- W3022497564 cites W179875071 @default.
- W3022497564 cites W1976857190 @default.
- W3022497564 cites W1992941561 @default.
- W3022497564 cites W2000445173 @default.
- W3022497564 cites W2015985912 @default.
- W3022497564 cites W2020979378 @default.
- W3022497564 cites W2022897447 @default.
- W3022497564 cites W2027717170 @default.
- W3022497564 cites W2053791508 @default.
- W3022497564 cites W2053877475 @default.
- W3022497564 cites W2053929429 @default.
- W3022497564 cites W2064675550 @default.
- W3022497564 cites W2065646018 @default.
- W3022497564 cites W2077866098 @default.
- W3022497564 cites W2084672464 @default.
- W3022497564 cites W2101174180 @default.
- W3022497564 cites W2109209184 @default.
- W3022497564 cites W2113820196 @default.
- W3022497564 cites W2114562724 @default.
- W3022497564 cites W2128685543 @default.
- W3022497564 cites W2133169646 @default.
- W3022497564 cites W2140978037 @default.
- W3022497564 cites W2160644724 @default.
- W3022497564 cites W2169328204 @default.
- W3022497564 cites W2169431365 @default.
- W3022497564 cites W2419121537 @default.
- W3022497564 cites W2425351520 @default.
- W3022497564 cites W2509527576 @default.
- W3022497564 cites W2535411948 @default.
- W3022497564 cites W2563236085 @default.
- W3022497564 cites W2590532631 @default.
- W3022497564 cites W2597330433 @default.
- W3022497564 cites W2740790377 @default.
- W3022497564 cites W2747116615 @default.
- W3022497564 cites W2762968405 @default.
- W3022497564 cites W2886782234 @default.
- W3022497564 cites W2897843020 @default.
- W3022497564 cites W2900359145 @default.
- W3022497564 cites W2908201961 @default.
- W3022497564 cites W2911653726 @default.
- W3022497564 cites W2915582651 @default.
- W3022497564 cites W2915967003 @default.
- W3022497564 cites W2951786958 @default.
- W3022497564 cites W2966293728 @default.
- W3022497564 doi "https://doi.org/10.1038/s41598-020-64184-0" @default.
- W3022497564 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7198502" @default.
- W3022497564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32366838" @default.
- W3022497564 hasPublicationYear "2020" @default.
- W3022497564 type Work @default.
- W3022497564 sameAs 3022497564 @default.
- W3022497564 citedByCount "16" @default.
- W3022497564 countsByYear W30224975642020 @default.
- W3022497564 countsByYear W30224975642021 @default.
- W3022497564 countsByYear W30224975642022 @default.
- W3022497564 countsByYear W30224975642023 @default.
- W3022497564 crossrefType "journal-article" @default.
- W3022497564 hasAuthorship W3022497564A5005291043 @default.
- W3022497564 hasAuthorship W3022497564A5010247077 @default.
- W3022497564 hasAuthorship W3022497564A5022646032 @default.
- W3022497564 hasAuthorship W3022497564A5028024742 @default.
- W3022497564 hasAuthorship W3022497564A5032124306 @default.
- W3022497564 hasAuthorship W3022497564A5033449275 @default.
- W3022497564 hasAuthorship W3022497564A5039562436 @default.
- W3022497564 hasAuthorship W3022497564A5044459999 @default.
- W3022497564 hasAuthorship W3022497564A5046192646 @default.
- W3022497564 hasAuthorship W3022497564A5052408592 @default.
- W3022497564 hasAuthorship W3022497564A5081381297 @default.
- W3022497564 hasAuthorship W3022497564A5083042968 @default.
- W3022497564 hasAuthorship W3022497564A5088003950 @default.
- W3022497564 hasBestOaLocation W30224975641 @default.
- W3022497564 hasConcept C10515644 @default.
- W3022497564 hasConcept C11413529 @default.
- W3022497564 hasConcept C119857082 @default.
- W3022497564 hasConcept C126322002 @default.
- W3022497564 hasConcept C151956035 @default.
- W3022497564 hasConcept C154945302 @default.
- W3022497564 hasConcept C160798450 @default.
- W3022497564 hasConcept C188816634 @default.
- W3022497564 hasConcept C207103383 @default.
- W3022497564 hasConcept C2779056158 @default.
- W3022497564 hasConcept C41008148 @default.