Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022545265> ?p ?o ?g. }
- W3022545265 abstract "Abstract We analyze theoretically the $$D^+rightarrow nu e^+ rho bar{K}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>→</mml:mo> <mml:mi>ν</mml:mi> <mml:msup> <mml:mi>e</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mi>ρ</mml:mi> <mml:mover> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> </mml:math> and $$D^+rightarrow nu e^+ bar{K}^* pi $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>→</mml:mo> <mml:mi>ν</mml:mi> <mml:msup> <mml:mi>e</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:msup> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>π</mml:mi> </mml:mrow> </mml:math> decays to see the feasibility to check the double pole nature of the axial-vector resonance $$K_1(1270)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1270</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> predicted by the unitary extensions of chiral perturbation theory (UChPT). Indeed, within UChPT the $$K_1(1270)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1270</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is dynamically generated from the interaction of a vector and a pseudoscalar meson, and two poles are obtained for the quantum numbers of this resonance. The lower mass pole couples dominantly to $$K^*pi $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mi>K</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>π</mml:mi> </mml:mrow> </mml:math> and the higher mass pole to $$rho K$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>ρ</mml:mi> <mml:mi>K</mml:mi> </mml:mrow> </mml:math> , therefore we can expect that different reactions weighing differently these channels in the production mechanisms enhance one or the other pole. We show that the different final VP channels in $$D^+rightarrow nu e^+ V P$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>→</mml:mo> <mml:mi>ν</mml:mi> <mml:msup> <mml:mi>e</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mi>V</mml:mi> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> weigh differently both poles, and this is reflected in the shape of the final vector-pseudoscalar invariant mass distributions. Therefore, we conclude that these decays are suitable to distinguish experimentally the predicted double pole of the $$K_1(1270)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1270</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> resonance." @default.
- W3022545265 created "2020-05-13" @default.
- W3022545265 creator A5009264109 @default.
- W3022545265 creator A5010783735 @default.
- W3022545265 creator A5033953325 @default.
- W3022545265 creator A5051526091 @default.
- W3022545265 creator A5057100848 @default.
- W3022545265 date "2020-05-01" @default.
- W3022545265 modified "2023-10-10" @default.
- W3022545265 title "Signatures of the two $$K_1(1270)$$ poles in $$D^+rightarrow nu e^+ V P$$ decay" @default.
- W3022545265 cites W1515030353 @default.
- W3022545265 cites W1526162102 @default.
- W3022545265 cites W1537238146 @default.
- W3022545265 cites W1596118892 @default.
- W3022545265 cites W1862518851 @default.
- W3022545265 cites W1965082454 @default.
- W3022545265 cites W1968884542 @default.
- W3022545265 cites W1977280352 @default.
- W3022545265 cites W1991767874 @default.
- W3022545265 cites W1996915629 @default.
- W3022545265 cites W2000003922 @default.
- W3022545265 cites W2001666312 @default.
- W3022545265 cites W2012402429 @default.
- W3022545265 cites W2025893571 @default.
- W3022545265 cites W2033216777 @default.
- W3022545265 cites W2040886267 @default.
- W3022545265 cites W2041486661 @default.
- W3022545265 cites W2054814500 @default.
- W3022545265 cites W2059065888 @default.
- W3022545265 cites W2065778497 @default.
- W3022545265 cites W2071180441 @default.
- W3022545265 cites W2074755112 @default.
- W3022545265 cites W2080689746 @default.
- W3022545265 cites W2082805895 @default.
- W3022545265 cites W2086445876 @default.
- W3022545265 cites W2087558524 @default.
- W3022545265 cites W2096144557 @default.
- W3022545265 cites W2098801790 @default.
- W3022545265 cites W2104912601 @default.
- W3022545265 cites W2112604408 @default.
- W3022545265 cites W2121140421 @default.
- W3022545265 cites W2141743314 @default.
- W3022545265 cites W2166686534 @default.
- W3022545265 cites W2172170133 @default.
- W3022545265 cites W2258672486 @default.
- W3022545265 cites W2734467811 @default.
- W3022545265 cites W2885931200 @default.
- W3022545265 cites W2898443394 @default.
- W3022545265 cites W2919932763 @default.
- W3022545265 cites W2951145167 @default.
- W3022545265 cites W2952252304 @default.
- W3022545265 cites W2989786386 @default.
- W3022545265 cites W3022509087 @default.
- W3022545265 cites W3029577816 @default.
- W3022545265 cites W3034317142 @default.
- W3022545265 cites W3103387180 @default.
- W3022545265 cites W3104368152 @default.
- W3022545265 cites W3105462408 @default.
- W3022545265 cites W4211038837 @default.
- W3022545265 cites W4240526597 @default.
- W3022545265 doi "https://doi.org/10.1140/epjc/s10052-020-7939-1" @default.
- W3022545265 hasPublicationYear "2020" @default.
- W3022545265 type Work @default.
- W3022545265 sameAs 3022545265 @default.
- W3022545265 citedByCount "9" @default.
- W3022545265 countsByYear W30225452652020 @default.
- W3022545265 countsByYear W30225452652021 @default.
- W3022545265 countsByYear W30225452652022 @default.
- W3022545265 countsByYear W30225452652023 @default.
- W3022545265 crossrefType "journal-article" @default.
- W3022545265 hasAuthorship W3022545265A5009264109 @default.
- W3022545265 hasAuthorship W3022545265A5010783735 @default.
- W3022545265 hasAuthorship W3022545265A5033953325 @default.
- W3022545265 hasAuthorship W3022545265A5051526091 @default.
- W3022545265 hasAuthorship W3022545265A5057100848 @default.
- W3022545265 hasBestOaLocation W30225452651 @default.
- W3022545265 hasConcept C11413529 @default.
- W3022545265 hasConcept C41008148 @default.
- W3022545265 hasConceptScore W3022545265C11413529 @default.
- W3022545265 hasConceptScore W3022545265C41008148 @default.
- W3022545265 hasFunder F4320321001 @default.
- W3022545265 hasIssue "5" @default.
- W3022545265 hasLocation W30225452651 @default.
- W3022545265 hasLocation W30225452652 @default.
- W3022545265 hasOpenAccess W3022545265 @default.
- W3022545265 hasPrimaryLocation W30225452651 @default.
- W3022545265 hasRelatedWork W2051487156 @default.
- W3022545265 hasRelatedWork W2052122378 @default.
- W3022545265 hasRelatedWork W2053286651 @default.
- W3022545265 hasRelatedWork W2073681303 @default.
- W3022545265 hasRelatedWork W2317200988 @default.
- W3022545265 hasRelatedWork W2544423928 @default.
- W3022545265 hasRelatedWork W2947381795 @default.
- W3022545265 hasRelatedWork W2181413294 @default.
- W3022545265 hasRelatedWork W2181743346 @default.
- W3022545265 hasRelatedWork W2187401768 @default.
- W3022545265 hasVolume "80" @default.
- W3022545265 isParatext "false" @default.
- W3022545265 isRetracted "false" @default.
- W3022545265 magId "3022545265" @default.