Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022604663> ?p ?o ?g. }
- W3022604663 endingPage "93178" @default.
- W3022604663 startingPage "93155" @default.
- W3022604663 abstract "A smart factory is a highly digitized and connected production facility that relies on smart manufacturing. Additionally, artificial intelligence is the core technology of smart factories. The use of machine learning and deep learning algorithms has produced fruitful results in many fields like image processing, speech recognition, fault detection, object detection, or medical sciences. With the increment in the use of smart machinery, the faults in the machinery equipment are expected to increase. Machinery fault detection and diagnosis through various deep learning algorithms has increased day by day. Many types of research have been done and published using both open-source and closed-source datasets, implementing the deep learning algorithms. Out of many publicly available datasets, Case Western Reserve University (CWRU) bearing dataset has been widely used to detect and diagnose machinery bearing fault and is accepted as a standard reference for validating the models. This paper summarizes the recent works which use the CWRU bearing dataset in machinery fault detection and diagnosis employing deep learning algorithms. We have reviewed the published works and presented the working algorithm, result, and other necessary details in this paper. This paper, we believe, can be of good help for future researchers to start their work on machinery fault detection and diagnosis using the CWRU dataset." @default.
- W3022604663 created "2020-05-13" @default.
- W3022604663 creator A5025187727 @default.
- W3022604663 creator A5051235120 @default.
- W3022604663 date "2020-01-01" @default.
- W3022604663 modified "2023-10-17" @default.
- W3022604663 title "Bearing Fault Detection and Diagnosis Using Case Western Reserve University Dataset With Deep Learning Approaches: A Review" @default.
- W3022604663 cites W1543198777 @default.
- W3022604663 cites W1819010325 @default.
- W3022604663 cites W1872896676 @default.
- W3022604663 cites W187337555 @default.
- W3022604663 cites W1979663417 @default.
- W3022604663 cites W1985716425 @default.
- W3022604663 cites W2000911430 @default.
- W3022604663 cites W2006523447 @default.
- W3022604663 cites W2014938333 @default.
- W3022604663 cites W2017774918 @default.
- W3022604663 cites W2020623375 @default.
- W3022604663 cites W2021247827 @default.
- W3022604663 cites W2028472133 @default.
- W3022604663 cites W2036259765 @default.
- W3022604663 cites W2059518577 @default.
- W3022604663 cites W2067802406 @default.
- W3022604663 cites W2082274261 @default.
- W3022604663 cites W2086510597 @default.
- W3022604663 cites W2104882246 @default.
- W3022604663 cites W2112796928 @default.
- W3022604663 cites W2119018277 @default.
- W3022604663 cites W2123003771 @default.
- W3022604663 cites W2128867122 @default.
- W3022604663 cites W2136922672 @default.
- W3022604663 cites W2141188346 @default.
- W3022604663 cites W2176950688 @default.
- W3022604663 cites W2184192902 @default.
- W3022604663 cites W2219903032 @default.
- W3022604663 cites W2258884143 @default.
- W3022604663 cites W2273817119 @default.
- W3022604663 cites W2277932823 @default.
- W3022604663 cites W2301032074 @default.
- W3022604663 cites W2332754758 @default.
- W3022604663 cites W2338318698 @default.
- W3022604663 cites W2404692435 @default.
- W3022604663 cites W243674440 @default.
- W3022604663 cites W2461729787 @default.
- W3022604663 cites W2480364715 @default.
- W3022604663 cites W2485614840 @default.
- W3022604663 cites W2497892191 @default.
- W3022604663 cites W2509330770 @default.
- W3022604663 cites W2562639359 @default.
- W3022604663 cites W2584994008 @default.
- W3022604663 cites W2586230645 @default.
- W3022604663 cites W2591055632 @default.
- W3022604663 cites W2591591405 @default.
- W3022604663 cites W2595796352 @default.
- W3022604663 cites W2601590138 @default.
- W3022604663 cites W2603304445 @default.
- W3022604663 cites W2609427876 @default.
- W3022604663 cites W2612554669 @default.
- W3022604663 cites W2618530766 @default.
- W3022604663 cites W2628062541 @default.
- W3022604663 cites W2732499510 @default.
- W3022604663 cites W2734669076 @default.
- W3022604663 cites W2737404945 @default.
- W3022604663 cites W2756182389 @default.
- W3022604663 cites W2762355244 @default.
- W3022604663 cites W2762841298 @default.
- W3022604663 cites W2765183969 @default.
- W3022604663 cites W2765226309 @default.
- W3022604663 cites W2767031373 @default.
- W3022604663 cites W2767234670 @default.
- W3022604663 cites W2767547957 @default.
- W3022604663 cites W2772084711 @default.
- W3022604663 cites W2782039574 @default.
- W3022604663 cites W2786808285 @default.
- W3022604663 cites W2790195878 @default.
- W3022604663 cites W2790951344 @default.
- W3022604663 cites W2792191775 @default.
- W3022604663 cites W2793629656 @default.
- W3022604663 cites W2794284562 @default.
- W3022604663 cites W2794908468 @default.
- W3022604663 cites W2795016359 @default.
- W3022604663 cites W2801396593 @default.
- W3022604663 cites W2803884688 @default.
- W3022604663 cites W2804061829 @default.
- W3022604663 cites W2811138152 @default.
- W3022604663 cites W2824874042 @default.
- W3022604663 cites W2886471976 @default.
- W3022604663 cites W2886794804 @default.
- W3022604663 cites W2888337213 @default.
- W3022604663 cites W2891319189 @default.
- W3022604663 cites W2893747136 @default.
- W3022604663 cites W2897735448 @default.
- W3022604663 cites W2901901222 @default.
- W3022604663 cites W2902647961 @default.
- W3022604663 cites W2902985761 @default.
- W3022604663 cites W2904218127 @default.
- W3022604663 cites W2906578288 @default.
- W3022604663 cites W2908062660 @default.