Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022607788> ?p ?o ?g. }
- W3022607788 endingPage "4239" @default.
- W3022607788 startingPage "4233" @default.
- W3022607788 abstract "Abstract Motivation Single-cell RNA-sequencing (scRNA-seq) has become an important tool to unravel cellular heterogeneity, discover new cell (sub)types, and understand cell development at single-cell resolution. However, one major challenge to scRNA-seq research is the presence of ‘drop-out’ events, which usually is due to extremely low mRNA input or the stochastic nature of gene expression. In this article, we present a novel single-cell RNA-seq drop-out correction (scDoc) method, imputing drop-out events by borrowing information for the same gene from highly similar cells. Results scDoc is the first method that directly involves drop-out information to accounting for cell-to-cell similarity estimation, which is crucial in scRNA-seq drop-out imputation but has not been appropriately examined. We evaluated the performance of scDoc using both simulated data and real scRNA-seq studies. Results show that scDoc outperforms the existing imputation methods in reference to data visualization, cell subpopulation identification and differential expression detection in scRNA-seq data. Availability and implementation R code is available at https://github.com/anlingUA/scDoc. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W3022607788 created "2020-05-13" @default.
- W3022607788 creator A5006881858 @default.
- W3022607788 creator A5019368300 @default.
- W3022607788 creator A5035094130 @default.
- W3022607788 creator A5042050677 @default.
- W3022607788 date "2020-05-04" @default.
- W3022607788 modified "2023-10-12" @default.
- W3022607788 title "scDoc: correcting drop-out events in single-cell RNA-seq data" @default.
- W3022607788 cites W1536902151 @default.
- W3022607788 cites W1552434751 @default.
- W3022607788 cites W1967327758 @default.
- W3022607788 cites W1979283544 @default.
- W3022607788 cites W1984883254 @default.
- W3022607788 cites W1988391018 @default.
- W3022607788 cites W2010653277 @default.
- W3022607788 cites W2023887100 @default.
- W3022607788 cites W2030017878 @default.
- W3022607788 cites W2060245619 @default.
- W3022607788 cites W2068881679 @default.
- W3022607788 cites W2069295116 @default.
- W3022607788 cites W2071010503 @default.
- W3022607788 cites W2086277161 @default.
- W3022607788 cites W2114104545 @default.
- W3022607788 cites W2152239989 @default.
- W3022607788 cites W2152692691 @default.
- W3022607788 cites W2165232124 @default.
- W3022607788 cites W2190545194 @default.
- W3022607788 cites W2281322842 @default.
- W3022607788 cites W2338756998 @default.
- W3022607788 cites W2343956310 @default.
- W3022607788 cites W2345356016 @default.
- W3022607788 cites W2516756255 @default.
- W3022607788 cites W2559702793 @default.
- W3022607788 cites W2605810679 @default.
- W3022607788 cites W2611660641 @default.
- W3022607788 cites W2739329039 @default.
- W3022607788 cites W2751468300 @default.
- W3022607788 cites W2753518299 @default.
- W3022607788 cites W2783644856 @default.
- W3022607788 cites W2788908087 @default.
- W3022607788 cites W2792693509 @default.
- W3022607788 cites W2801949492 @default.
- W3022607788 cites W2916779758 @default.
- W3022607788 cites W2944189019 @default.
- W3022607788 cites W2949067670 @default.
- W3022607788 cites W2951217100 @default.
- W3022607788 cites W2951381561 @default.
- W3022607788 cites W2952303649 @default.
- W3022607788 cites W4231157025 @default.
- W3022607788 cites W4235169531 @default.
- W3022607788 cites W4235276207 @default.
- W3022607788 cites W4244203357 @default.
- W3022607788 doi "https://doi.org/10.1093/bioinformatics/btaa283" @default.
- W3022607788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32365169" @default.
- W3022607788 hasPublicationYear "2020" @default.
- W3022607788 type Work @default.
- W3022607788 sameAs 3022607788 @default.
- W3022607788 citedByCount "12" @default.
- W3022607788 countsByYear W30226077882020 @default.
- W3022607788 countsByYear W30226077882021 @default.
- W3022607788 countsByYear W30226077882022 @default.
- W3022607788 countsByYear W30226077882023 @default.
- W3022607788 crossrefType "journal-article" @default.
- W3022607788 hasAuthorship W3022607788A5006881858 @default.
- W3022607788 hasAuthorship W3022607788A5019368300 @default.
- W3022607788 hasAuthorship W3022607788A5035094130 @default.
- W3022607788 hasAuthorship W3022607788A5042050677 @default.
- W3022607788 hasBestOaLocation W30226077882 @default.
- W3022607788 hasConcept C104317684 @default.
- W3022607788 hasConcept C107397762 @default.
- W3022607788 hasConcept C119857082 @default.
- W3022607788 hasConcept C124101348 @default.
- W3022607788 hasConcept C150194340 @default.
- W3022607788 hasConcept C162317418 @default.
- W3022607788 hasConcept C41008148 @default.
- W3022607788 hasConcept C54355233 @default.
- W3022607788 hasConcept C58041806 @default.
- W3022607788 hasConcept C67705224 @default.
- W3022607788 hasConcept C70721500 @default.
- W3022607788 hasConcept C86803240 @default.
- W3022607788 hasConcept C9357733 @default.
- W3022607788 hasConceptScore W3022607788C104317684 @default.
- W3022607788 hasConceptScore W3022607788C107397762 @default.
- W3022607788 hasConceptScore W3022607788C119857082 @default.
- W3022607788 hasConceptScore W3022607788C124101348 @default.
- W3022607788 hasConceptScore W3022607788C150194340 @default.
- W3022607788 hasConceptScore W3022607788C162317418 @default.
- W3022607788 hasConceptScore W3022607788C41008148 @default.
- W3022607788 hasConceptScore W3022607788C54355233 @default.
- W3022607788 hasConceptScore W3022607788C58041806 @default.
- W3022607788 hasConceptScore W3022607788C67705224 @default.
- W3022607788 hasConceptScore W3022607788C70721500 @default.
- W3022607788 hasConceptScore W3022607788C86803240 @default.
- W3022607788 hasConceptScore W3022607788C9357733 @default.
- W3022607788 hasFunder F4320306114 @default.
- W3022607788 hasIssue "15" @default.
- W3022607788 hasLocation W30226077881 @default.