Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022630129> ?p ?o ?g. }
- W3022630129 endingPage "37" @default.
- W3022630129 startingPage "1" @default.
- W3022630129 abstract "Big data processing systems (e.g., Hadoop, Spark, Storm) contain a vast number of configuration parameters controlling parallelism, I/O behavior, memory settings, and compression. Improper parameter settings can cause significant performance degradation and stability issues. However, regular users and even expert administrators grapple with understanding and tuning them to achieve good performance. We investigate existing approaches on parameter tuning for both batch and stream data processing systems and classify them into six categories: rule-based, cost modeling, simulation-based, experiment-driven, machine learning, and adaptive tuning. We summarize the pros and cons of each approach and raise some open research problems for automatic parameter tuning." @default.
- W3022630129 created "2020-05-13" @default.
- W3022630129 creator A5010833372 @default.
- W3022630129 creator A5018627557 @default.
- W3022630129 creator A5059249605 @default.
- W3022630129 date "2020-04-26" @default.
- W3022630129 modified "2023-10-16" @default.
- W3022630129 title "A Survey on Automatic Parameter Tuning for Big Data Processing Systems" @default.
- W3022630129 cites W1481588857 @default.
- W3022630129 cites W1582576952 @default.
- W3022630129 cites W1831229313 @default.
- W3022630129 cites W1910045153 @default.
- W3022630129 cites W1925579137 @default.
- W3022630129 cites W1980376525 @default.
- W3022630129 cites W1982363918 @default.
- W3022630129 cites W1984116073 @default.
- W3022630129 cites W1994097195 @default.
- W3022630129 cites W2007227498 @default.
- W3022630129 cites W2008503861 @default.
- W3022630129 cites W2010279913 @default.
- W3022630129 cites W2011973765 @default.
- W3022630129 cites W2023628927 @default.
- W3022630129 cites W2030059621 @default.
- W3022630129 cites W2038361169 @default.
- W3022630129 cites W2040797713 @default.
- W3022630129 cites W2044936152 @default.
- W3022630129 cites W2058047606 @default.
- W3022630129 cites W2058340614 @default.
- W3022630129 cites W2074501444 @default.
- W3022630129 cites W2086024829 @default.
- W3022630129 cites W2088687427 @default.
- W3022630129 cites W2105947650 @default.
- W3022630129 cites W2112474496 @default.
- W3022630129 cites W2114303224 @default.
- W3022630129 cites W2114896543 @default.
- W3022630129 cites W2118566694 @default.
- W3022630129 cites W2122950698 @default.
- W3022630129 cites W2132353061 @default.
- W3022630129 cites W2136374084 @default.
- W3022630129 cites W2141684031 @default.
- W3022630129 cites W2148222209 @default.
- W3022630129 cites W2152053450 @default.
- W3022630129 cites W2154138844 @default.
- W3022630129 cites W2157490430 @default.
- W3022630129 cites W2171872029 @default.
- W3022630129 cites W2173213060 @default.
- W3022630129 cites W2175075972 @default.
- W3022630129 cites W2178638082 @default.
- W3022630129 cites W2187341577 @default.
- W3022630129 cites W2199096058 @default.
- W3022630129 cites W2208542492 @default.
- W3022630129 cites W2294316975 @default.
- W3022630129 cites W2296061154 @default.
- W3022630129 cites W2317485026 @default.
- W3022630129 cites W2318383848 @default.
- W3022630129 cites W2511329048 @default.
- W3022630129 cites W2529999572 @default.
- W3022630129 cites W2570373436 @default.
- W3022630129 cites W2582789036 @default.
- W3022630129 cites W2612026221 @default.
- W3022630129 cites W2622443349 @default.
- W3022630129 cites W2731964388 @default.
- W3022630129 cites W2754607509 @default.
- W3022630129 cites W2756970668 @default.
- W3022630129 cites W2762397184 @default.
- W3022630129 cites W2763196511 @default.
- W3022630129 cites W2769458113 @default.
- W3022630129 cites W2770133153 @default.
- W3022630129 cites W2783447917 @default.
- W3022630129 cites W2786499150 @default.
- W3022630129 cites W2792529086 @default.
- W3022630129 cites W2887412037 @default.
- W3022630129 cites W2894172627 @default.
- W3022630129 cites W2911635840 @default.
- W3022630129 cites W2949781423 @default.
- W3022630129 cites W2963745734 @default.
- W3022630129 cites W2964298054 @default.
- W3022630129 cites W2970836712 @default.
- W3022630129 cites W2984336599 @default.
- W3022630129 cites W3098844916 @default.
- W3022630129 cites W2972830190 @default.
- W3022630129 doi "https://doi.org/10.1145/3381027" @default.
- W3022630129 hasPublicationYear "2020" @default.
- W3022630129 type Work @default.
- W3022630129 sameAs 3022630129 @default.
- W3022630129 citedByCount "43" @default.
- W3022630129 countsByYear W30226301292020 @default.
- W3022630129 countsByYear W30226301292021 @default.
- W3022630129 countsByYear W30226301292022 @default.
- W3022630129 countsByYear W30226301292023 @default.
- W3022630129 crossrefType "journal-article" @default.
- W3022630129 hasAuthorship W3022630129A5010833372 @default.
- W3022630129 hasAuthorship W3022630129A5018627557 @default.
- W3022630129 hasAuthorship W3022630129A5059249605 @default.
- W3022630129 hasBestOaLocation W30226301291 @default.
- W3022630129 hasConcept C112972136 @default.
- W3022630129 hasConcept C119857082 @default.
- W3022630129 hasConcept C124101348 @default.