Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022661224> ?p ?o ?g. }
- W3022661224 endingPage "84917" @default.
- W3022661224 startingPage "84906" @default.
- W3022661224 abstract "As one of the widespread RNA post-transcriptional modifications (PTCMs), 5-Methylcytosine (m5C) plays vital roles in better understanding of basic biological mechanisms and major disease treatments. In experiments, traditional high-throughput approaches to find m5C sites are usually expensive and laborious. Additionally, facing with a large number of RNA sequences, developing accurate computational methods to distinguish m5C and non-m5C sites is an efficient solution. Here we introduced a novel predictor, called iRNA-m5C_NB, to identify m5C sites in Home sapiens using Naive Bayes (NB) algorithm. In this method, unbalanced dataset Met935 is firstly analyzed using efficient hybrid-sampling strategy SMOTEEEN. Then top 57 features are selected by the ANOVA F-value from four kinds of well-performance feature extraction techniques, including Bi-profile Bayes (BPB), enhanced Nucleic Acid Composition (ENAC), electron-ion interaction pseudopotentials (EIIP) and mMGap_1. Based on the jackknife test, the evaluated recall for the unbalanced training dataset Met935 is up to 82.81% with MCC of 0.63. And for the independent dataset Test1157, the predictor still shows high recall of 70.06% and MCC of 0.34. It is the first m5C predictor constructed using the unbalanced dataset, and the recall scores are increased by 19.82% and 59.23% for jackknife and independent tests compared with the latest tool RNAm5CPred, respectively. We demonstrate that the proposed predictor iRNA-m5C_NB outperforms other state-of-art models, which hopes to be an efficient and reliable method to identify m5C sites." @default.
- W3022661224 created "2020-05-13" @default.
- W3022661224 creator A5011545312 @default.
- W3022661224 creator A5032162374 @default.
- W3022661224 creator A5033551204 @default.
- W3022661224 creator A5045511627 @default.
- W3022661224 creator A5062628676 @default.
- W3022661224 date "2020-01-01" @default.
- W3022661224 modified "2023-10-12" @default.
- W3022661224 title "iRNA-m5C_NB: A Novel Predictor to Identify RNA 5-Methylcytosine Sites Based on the Naive Bayes Classifier" @default.
- W3022661224 cites W1935366897 @default.
- W3022661224 cites W1947267113 @default.
- W3022661224 cites W1976526581 @default.
- W3022661224 cites W1976978745 @default.
- W3022661224 cites W1979273476 @default.
- W3022661224 cites W1988790447 @default.
- W3022661224 cites W1993220166 @default.
- W3022661224 cites W2005311687 @default.
- W3022661224 cites W2005786380 @default.
- W3022661224 cites W2010688739 @default.
- W3022661224 cites W2022268135 @default.
- W3022661224 cites W2027514285 @default.
- W3022661224 cites W2048356293 @default.
- W3022661224 cites W2055735408 @default.
- W3022661224 cites W2058767191 @default.
- W3022661224 cites W2062692445 @default.
- W3022661224 cites W2067022150 @default.
- W3022661224 cites W2067364214 @default.
- W3022661224 cites W2081943791 @default.
- W3022661224 cites W2085398950 @default.
- W3022661224 cites W2107686700 @default.
- W3022661224 cites W2124800414 @default.
- W3022661224 cites W2143801120 @default.
- W3022661224 cites W2148143831 @default.
- W3022661224 cites W2159855308 @default.
- W3022661224 cites W2165040571 @default.
- W3022661224 cites W2167397429 @default.
- W3022661224 cites W2170747616 @default.
- W3022661224 cites W2171557832 @default.
- W3022661224 cites W2427122612 @default.
- W3022661224 cites W2438439291 @default.
- W3022661224 cites W2461096072 @default.
- W3022661224 cites W2470414691 @default.
- W3022661224 cites W2490420619 @default.
- W3022661224 cites W2513334320 @default.
- W3022661224 cites W2516916168 @default.
- W3022661224 cites W2524367868 @default.
- W3022661224 cites W2526285516 @default.
- W3022661224 cites W2591077138 @default.
- W3022661224 cites W2592644437 @default.
- W3022661224 cites W2604822050 @default.
- W3022661224 cites W2606518593 @default.
- W3022661224 cites W2607378088 @default.
- W3022661224 cites W2608035254 @default.
- W3022661224 cites W2614935527 @default.
- W3022661224 cites W2623542857 @default.
- W3022661224 cites W2741867328 @default.
- W3022661224 cites W2750547662 @default.
- W3022661224 cites W2768833223 @default.
- W3022661224 cites W2769865684 @default.
- W3022661224 cites W2776616144 @default.
- W3022661224 cites W2780936345 @default.
- W3022661224 cites W2782565892 @default.
- W3022661224 cites W2793168264 @default.
- W3022661224 cites W2794800511 @default.
- W3022661224 cites W2798106464 @default.
- W3022661224 cites W2799200068 @default.
- W3022661224 cites W2800245053 @default.
- W3022661224 cites W2801398392 @default.
- W3022661224 cites W2804672687 @default.
- W3022661224 cites W2806146459 @default.
- W3022661224 cites W2806565274 @default.
- W3022661224 cites W2808487499 @default.
- W3022661224 cites W2810968367 @default.
- W3022661224 cites W2883534252 @default.
- W3022661224 cites W2884581375 @default.
- W3022661224 cites W2886568032 @default.
- W3022661224 cites W2886900083 @default.
- W3022661224 cites W2889929401 @default.
- W3022661224 cites W2891290193 @default.
- W3022661224 cites W2896605526 @default.
- W3022661224 cites W2897050165 @default.
- W3022661224 cites W2899288360 @default.
- W3022661224 cites W2900134604 @default.
- W3022661224 cites W2900694973 @default.
- W3022661224 cites W2901890703 @default.
- W3022661224 cites W2905321002 @default.
- W3022661224 cites W2905629607 @default.
- W3022661224 cites W2909387555 @default.
- W3022661224 cites W2909409778 @default.
- W3022661224 cites W2910249797 @default.
- W3022661224 cites W2911617196 @default.
- W3022661224 cites W2911756720 @default.
- W3022661224 cites W2911964244 @default.
- W3022661224 cites W2915489297 @default.
- W3022661224 cites W2919339992 @default.
- W3022661224 cites W2921372942 @default.
- W3022661224 cites W2928048063 @default.