Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022763758> ?p ?o ?g. }
- W3022763758 endingPage "4001" @default.
- W3022763758 startingPage "3989" @default.
- W3022763758 abstract "Machine learning techniques, specifically gradient-enhanced Kriging (GEK), have been implemented for molecular geometry optimization. GEK-based optimization has many advantages compared to conventional—step-restricted second-order truncated expansion—molecular optimization methods. In particular, the surrogate model given by GEK can have multiple stationary points, will smoothly converge to the exact model as the number of sample points increases, and contains an explicit expression for the expected error of the model function at an arbitrary point. Machine learning is, however, associated with abundance of data, contrary to the situation desired for efficient geometry optimizations. In this paper, we demonstrate how the GEK procedure can be utilized in a fashion such that in the presence of few data points, the surrogate surface will in a robust way guide the optimization to a minimum of a potential energy surface. In this respect, the GEK procedure will be used to mimic the behavior of a conventional second-order scheme but retaining the flexibility of the superior machine learning approach. Moreover, the expected error will be used in the optimizations to facilitate restricted-variance optimizations. A procedure which relates the eigenvalues of the approximate guessed Hessian with the individual characteristic lengths, used in the GEK model, reduces the number of empirical parameters to optimize to two: the value of the trend function and the maximum allowed variance. These parameters are determined using the extended Baker (e-Baker) and part of the Baker transition-state (Baker-TS) test suites as a training set. The so-created optimization procedure is tested using the e-Baker, full Baker-TS, and S22 test suites, at the density functional theory and second-order Møller–Plesset levels of approximation. The results show that the new method is generally of similar or better performance than a state-of-the-art conventional method, even for cases where no significant improvement was expected." @default.
- W3022763758 created "2020-05-13" @default.
- W3022763758 creator A5014734081 @default.
- W3022763758 creator A5020239623 @default.
- W3022763758 creator A5027246187 @default.
- W3022763758 creator A5050030345 @default.
- W3022763758 creator A5085785032 @default.
- W3022763758 date "2020-05-06" @default.
- W3022763758 modified "2023-10-13" @default.
- W3022763758 title "Restricted-Variance Molecular Geometry Optimization Based on Gradient-Enhanced Kriging" @default.
- W3022763758 cites W1504277857 @default.
- W3022763758 cites W1972209418 @default.
- W3022763758 cites W1975319829 @default.
- W3022763758 cites W1979394106 @default.
- W3022763758 cites W2005136695 @default.
- W3022763758 cites W2006041360 @default.
- W3022763758 cites W2007663400 @default.
- W3022763758 cites W2019867440 @default.
- W3022763758 cites W2021350363 @default.
- W3022763758 cites W2024697317 @default.
- W3022763758 cites W2025860303 @default.
- W3022763758 cites W2037692839 @default.
- W3022763758 cites W2038210983 @default.
- W3022763758 cites W2051434435 @default.
- W3022763758 cites W2051669046 @default.
- W3022763758 cites W2052171888 @default.
- W3022763758 cites W2063222925 @default.
- W3022763758 cites W2064142965 @default.
- W3022763758 cites W2064732663 @default.
- W3022763758 cites W2067450098 @default.
- W3022763758 cites W2076516143 @default.
- W3022763758 cites W2078409719 @default.
- W3022763758 cites W2098506381 @default.
- W3022763758 cites W2099428582 @default.
- W3022763758 cites W2103111465 @default.
- W3022763758 cites W2108565410 @default.
- W3022763758 cites W2114459240 @default.
- W3022763758 cites W2139916893 @default.
- W3022763758 cites W2151238122 @default.
- W3022763758 cites W2267084654 @default.
- W3022763758 cites W2330152209 @default.
- W3022763758 cites W2502655619 @default.
- W3022763758 cites W2571886965 @default.
- W3022763758 cites W2791732112 @default.
- W3022763758 cites W2888202911 @default.
- W3022763758 cites W2898206326 @default.
- W3022763758 cites W2901155091 @default.
- W3022763758 cites W2972738436 @default.
- W3022763758 cites W2981328235 @default.
- W3022763758 cites W2992233167 @default.
- W3022763758 cites W3008823824 @default.
- W3022763758 cites W4211002219 @default.
- W3022763758 cites W4211194514 @default.
- W3022763758 cites W4229666556 @default.
- W3022763758 cites W55912154 @default.
- W3022763758 doi "https://doi.org/10.1021/acs.jctc.0c00257" @default.
- W3022763758 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7304864" @default.
- W3022763758 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32374164" @default.
- W3022763758 hasPublicationYear "2020" @default.
- W3022763758 type Work @default.
- W3022763758 sameAs 3022763758 @default.
- W3022763758 citedByCount "24" @default.
- W3022763758 countsByYear W30227637582020 @default.
- W3022763758 countsByYear W30227637582021 @default.
- W3022763758 countsByYear W30227637582022 @default.
- W3022763758 countsByYear W30227637582023 @default.
- W3022763758 crossrefType "journal-article" @default.
- W3022763758 hasAuthorship W3022763758A5014734081 @default.
- W3022763758 hasAuthorship W3022763758A5020239623 @default.
- W3022763758 hasAuthorship W3022763758A5027246187 @default.
- W3022763758 hasAuthorship W3022763758A5050030345 @default.
- W3022763758 hasAuthorship W3022763758A5085785032 @default.
- W3022763758 hasBestOaLocation W30227637581 @default.
- W3022763758 hasConcept C105795698 @default.
- W3022763758 hasConcept C11413529 @default.
- W3022763758 hasConcept C119857082 @default.
- W3022763758 hasConcept C121955636 @default.
- W3022763758 hasConcept C126255220 @default.
- W3022763758 hasConcept C131675550 @default.
- W3022763758 hasConcept C137836250 @default.
- W3022763758 hasConcept C14036430 @default.
- W3022763758 hasConcept C144133560 @default.
- W3022763758 hasConcept C196083921 @default.
- W3022763758 hasConcept C203616005 @default.
- W3022763758 hasConcept C21080849 @default.
- W3022763758 hasConcept C2780598303 @default.
- W3022763758 hasConcept C28826006 @default.
- W3022763758 hasConcept C33923547 @default.
- W3022763758 hasConcept C41008148 @default.
- W3022763758 hasConcept C78458016 @default.
- W3022763758 hasConcept C81692654 @default.
- W3022763758 hasConcept C86803240 @default.
- W3022763758 hasConceptScore W3022763758C105795698 @default.
- W3022763758 hasConceptScore W3022763758C11413529 @default.
- W3022763758 hasConceptScore W3022763758C119857082 @default.
- W3022763758 hasConceptScore W3022763758C121955636 @default.
- W3022763758 hasConceptScore W3022763758C126255220 @default.
- W3022763758 hasConceptScore W3022763758C131675550 @default.