Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022806883> ?p ?o ?g. }
- W3022806883 abstract "Researchers have proposed a variety of predictive business process monitoring (PBPM) techniques aiming to predict future process behaviour during the process execution. Especially, techniques for the next activity prediction anticipate great potential in improving operational business processes. To gain more accurate predictions, a plethora of these techniques rely on deep neural networks (DNNs) and consider information about the context, in which the process is running. However, an in-depth comparison of such techniques is missing in the PBPM literature, which prevents researchers and practitioners from selecting the best solution for a given event log. To remedy this problem, we empirically evaluate the predictive quality of three promising DNN architectures, combined with five proven encoding techniques and based on five context-enriched real-life event logs. We provide four findings that can support researchers and practitioners in designing novel PBPM techniques for predicting the next activities." @default.
- W3022806883 created "2020-05-13" @default.
- W3022806883 creator A5014144494 @default.
- W3022806883 creator A5051173445 @default.
- W3022806883 creator A5053758786 @default.
- W3022806883 creator A5057780661 @default.
- W3022806883 creator A5064458729 @default.
- W3022806883 creator A5067830118 @default.
- W3022806883 creator A5078021208 @default.
- W3022806883 creator A5089944455 @default.
- W3022806883 date "2020-05-03" @default.
- W3022806883 modified "2023-10-18" @default.
- W3022806883 title "An empirical comparison of deep-neural-network architectures for next activity prediction using context-enriched process event logs" @default.
- W3022806883 cites W152459482 @default.
- W3022806883 cites W1595315897 @default.
- W3022806883 cites W1614298861 @default.
- W3022806883 cites W1680392829 @default.
- W3022806883 cites W1689711448 @default.
- W3022806883 cites W1836465849 @default.
- W3022806883 cites W1846981065 @default.
- W3022806883 cites W1976526581 @default.
- W3022806883 cites W1994292711 @default.
- W3022806883 cites W2016944307 @default.
- W3022806883 cites W2064675550 @default.
- W3022806883 cites W2070996757 @default.
- W3022806883 cites W2083135154 @default.
- W3022806883 cites W2095705004 @default.
- W3022806883 cites W2097998348 @default.
- W3022806883 cites W2118978333 @default.
- W3022806883 cites W2131744502 @default.
- W3022806883 cites W2132304385 @default.
- W3022806883 cites W2140190241 @default.
- W3022806883 cites W2157331557 @default.
- W3022806883 cites W2501271607 @default.
- W3022806883 cites W2530887700 @default.
- W3022806883 cites W2557283755 @default.
- W3022806883 cites W2581522324 @default.
- W3022806883 cites W2584722588 @default.
- W3022806883 cites W2744700103 @default.
- W3022806883 cites W2765449478 @default.
- W3022806883 cites W2767387808 @default.
- W3022806883 cites W2783973656 @default.
- W3022806883 cites W2786462606 @default.
- W3022806883 cites W2880620558 @default.
- W3022806883 cites W2884606998 @default.
- W3022806883 cites W2892035503 @default.
- W3022806883 cites W2908291589 @default.
- W3022806883 cites W2919115771 @default.
- W3022806883 cites W2938612085 @default.
- W3022806883 cites W2939121306 @default.
- W3022806883 cites W2943854869 @default.
- W3022806883 cites W2955780339 @default.
- W3022806883 cites W2963798886 @default.
- W3022806883 cites W2963959597 @default.
- W3022806883 cites W2964066696 @default.
- W3022806883 cites W2964300152 @default.
- W3022806883 cites W2966756122 @default.
- W3022806883 cites W2969679574 @default.
- W3022806883 cites W2969940319 @default.
- W3022806883 cites W2971318561 @default.
- W3022806883 cites W2987728367 @default.
- W3022806883 cites W3005305068 @default.
- W3022806883 cites W3010408169 @default.
- W3022806883 cites W3101763713 @default.
- W3022806883 doi "https://doi.org/10.48550/arxiv.2005.01194" @default.
- W3022806883 hasPublicationYear "2020" @default.
- W3022806883 type Work @default.
- W3022806883 sameAs 3022806883 @default.
- W3022806883 citedByCount "2" @default.
- W3022806883 countsByYear W30228068832020 @default.
- W3022806883 countsByYear W30228068832021 @default.
- W3022806883 crossrefType "posted-content" @default.
- W3022806883 hasAuthorship W3022806883A5014144494 @default.
- W3022806883 hasAuthorship W3022806883A5051173445 @default.
- W3022806883 hasAuthorship W3022806883A5053758786 @default.
- W3022806883 hasAuthorship W3022806883A5057780661 @default.
- W3022806883 hasAuthorship W3022806883A5064458729 @default.
- W3022806883 hasAuthorship W3022806883A5067830118 @default.
- W3022806883 hasAuthorship W3022806883A5078021208 @default.
- W3022806883 hasAuthorship W3022806883A5089944455 @default.
- W3022806883 hasBestOaLocation W30228068831 @default.
- W3022806883 hasConcept C111472728 @default.
- W3022806883 hasConcept C111919701 @default.
- W3022806883 hasConcept C119857082 @default.
- W3022806883 hasConcept C121332964 @default.
- W3022806883 hasConcept C124101348 @default.
- W3022806883 hasConcept C124670913 @default.
- W3022806883 hasConcept C125411270 @default.
- W3022806883 hasConcept C127413603 @default.
- W3022806883 hasConcept C138885662 @default.
- W3022806883 hasConcept C151730666 @default.
- W3022806883 hasConcept C154945302 @default.
- W3022806883 hasConcept C174998907 @default.
- W3022806883 hasConcept C207505557 @default.
- W3022806883 hasConcept C21547014 @default.
- W3022806883 hasConcept C2522767166 @default.
- W3022806883 hasConcept C2779343474 @default.
- W3022806883 hasConcept C2779530757 @default.
- W3022806883 hasConcept C2779662365 @default.
- W3022806883 hasConcept C41008148 @default.