Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022854520> ?p ?o ?g. }
- W3022854520 endingPage "91302" @default.
- W3022854520 startingPage "91287" @default.
- W3022854520 abstract "We present a novel approach for timely classification and verification of network traffic using Gaussian Mixture Models (GMMs). We generate a separate GMM for each class of applications using component-wise expectation-maximization (CEM) to match the network traffic distribution generated by these applications. We apply our models for both traffic classification, where the goal is to identify the source application from which the traffic originates, by evaluating the maximum posterior probability, and for traffic verification, where the goal is to verify whether the application that claims to be the source of the traffic is as expected, by likelihood testing. Our models use only the first initial packets of truncated flows in order to provide more efficient and timely traffic classification and verification. This allows for triggering timely countermeasures before the end of flows. We demonstrate the effectiveness of our approach by experiments on a public dataset collected from a real network. Our traffic classification approach outperforms other state-of-the-art approaches that are based on machine learning, and achieves up to 97.7% flow classification accuracy when using only 9 first initial packets of flows. We show that 96.6% flow classification accuracy can still be obtained when training the GMMs using only 0.5% of all flows. Our traffic verification approach achieves a minimum Half Total Error Rate (HTER) of 7.65% when using only 6 first initial packets of flows." @default.
- W3022854520 created "2020-05-13" @default.
- W3022854520 creator A5014697356 @default.
- W3022854520 creator A5024362978 @default.
- W3022854520 creator A5031097493 @default.
- W3022854520 creator A5062126489 @default.
- W3022854520 date "2020-01-01" @default.
- W3022854520 modified "2023-10-15" @default.
- W3022854520 title "Timely Classification and Verification of Network Traffic Using Gaussian Mixture Models" @default.
- W3022854520 cites W1548390947 @default.
- W3022854520 cites W1570317704 @default.
- W3022854520 cites W1586284606 @default.
- W3022854520 cites W1788721064 @default.
- W3022854520 cites W1973668864 @default.
- W3022854520 cites W1977336324 @default.
- W3022854520 cites W1986497098 @default.
- W3022854520 cites W1990590077 @default.
- W3022854520 cites W1992664624 @default.
- W3022854520 cites W1999880153 @default.
- W3022854520 cites W2008686970 @default.
- W3022854520 cites W2011628134 @default.
- W3022854520 cites W2012095206 @default.
- W3022854520 cites W2015245929 @default.
- W3022854520 cites W2027664152 @default.
- W3022854520 cites W2031919959 @default.
- W3022854520 cites W2035060716 @default.
- W3022854520 cites W2040403168 @default.
- W3022854520 cites W2047046780 @default.
- W3022854520 cites W2049633694 @default.
- W3022854520 cites W2053380786 @default.
- W3022854520 cites W2055130908 @default.
- W3022854520 cites W2055261595 @default.
- W3022854520 cites W2063432924 @default.
- W3022854520 cites W2064751934 @default.
- W3022854520 cites W2071678110 @default.
- W3022854520 cites W2073089243 @default.
- W3022854520 cites W2079026406 @default.
- W3022854520 cites W2087016914 @default.
- W3022854520 cites W2093833812 @default.
- W3022854520 cites W2096118443 @default.
- W3022854520 cites W2096674597 @default.
- W3022854520 cites W2110890874 @default.
- W3022854520 cites W2113555287 @default.
- W3022854520 cites W2119271160 @default.
- W3022854520 cites W2120955848 @default.
- W3022854520 cites W2122192957 @default.
- W3022854520 cites W2122646361 @default.
- W3022854520 cites W2125216345 @default.
- W3022854520 cites W2142889610 @default.
- W3022854520 cites W2148913232 @default.
- W3022854520 cites W2149600645 @default.
- W3022854520 cites W2153635508 @default.
- W3022854520 cites W2163950614 @default.
- W3022854520 cites W2167101736 @default.
- W3022854520 cites W2481434706 @default.
- W3022854520 cites W2569330741 @default.
- W3022854520 cites W2613715541 @default.
- W3022854520 cites W2756489700 @default.
- W3022854520 cites W2885862920 @default.
- W3022854520 cites W2887791728 @default.
- W3022854520 cites W2893843957 @default.
- W3022854520 cites W2929803724 @default.
- W3022854520 cites W2963516518 @default.
- W3022854520 doi "https://doi.org/10.1109/access.2020.2992556" @default.
- W3022854520 hasPublicationYear "2020" @default.
- W3022854520 type Work @default.
- W3022854520 sameAs 3022854520 @default.
- W3022854520 citedByCount "4" @default.
- W3022854520 countsByYear W30228545202020 @default.
- W3022854520 countsByYear W30228545202022 @default.
- W3022854520 countsByYear W30228545202023 @default.
- W3022854520 crossrefType "journal-article" @default.
- W3022854520 hasAuthorship W3022854520A5014697356 @default.
- W3022854520 hasAuthorship W3022854520A5024362978 @default.
- W3022854520 hasAuthorship W3022854520A5031097493 @default.
- W3022854520 hasAuthorship W3022854520A5062126489 @default.
- W3022854520 hasBestOaLocation W30228545201 @default.
- W3022854520 hasConcept C105795698 @default.
- W3022854520 hasConcept C119857082 @default.
- W3022854520 hasConcept C121332964 @default.
- W3022854520 hasConcept C124101348 @default.
- W3022854520 hasConcept C126255220 @default.
- W3022854520 hasConcept C153180895 @default.
- W3022854520 hasConcept C154945302 @default.
- W3022854520 hasConcept C158379750 @default.
- W3022854520 hasConcept C163716315 @default.
- W3022854520 hasConcept C169988225 @default.
- W3022854520 hasConcept C176715033 @default.
- W3022854520 hasConcept C182081679 @default.
- W3022854520 hasConcept C207512268 @default.
- W3022854520 hasConcept C2776330181 @default.
- W3022854520 hasConcept C31258907 @default.
- W3022854520 hasConcept C33923547 @default.
- W3022854520 hasConcept C38652104 @default.
- W3022854520 hasConcept C41008148 @default.
- W3022854520 hasConcept C49781872 @default.
- W3022854520 hasConcept C61224824 @default.
- W3022854520 hasConcept C62520636 @default.