Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022992207> ?p ?o ?g. }
- W3022992207 endingPage "1278" @default.
- W3022992207 startingPage "1259" @default.
- W3022992207 abstract "Abstract Tropical Rainfall Measuring Mission (TRMM) satellite products constitute valuable precipitation datasets over regions with sparse rain gauge networks. Downscaling is an effective approach to estimating the precipitation over ungauged areas with high spatial resolution. However, a large bias and low resolution of original TRMM satellite images constitute constraints for practical hydrologic applications of TRMM precipitation products. This study contributes two precipitation downscaling algorithms by exploring the nonstationarity relations between precipitation and various environment factors [daytime surface temperature (LTD), terrain slope, normalized difference vegetation index (NDVI), altitude, longitude, and latitude] to overcome bias and low-resolution constraints of TRMM precipitation. Downscaling of precipitation is achieved with the geographically weighted regression model (GWR) and the backward-propagation artificial neural networks (BP_ANN). The probability density function (PDF) algorithm corrects the bias of satellite precipitation data with respect to spatial and temporal scales prior to downscaling. The principal component analysis algorithm (PCA) provides an alternative method of obtaining accurate monthly rainfall estimates during the wet rainfall season that minimizes the temporal uncertainties and upscaling effects introduced by direct accumulation (DA) of precipitation. The performances of the proposed downscaling algorithms are assessed by downscaling the latest version of TRMM3B42 V7 datasets within Hubei Province from 0.25° (about 25 km) to 1-km spatial resolution at the monthly scale. The downscaled datasets are systematically evaluated with in situ observations at 27 rain gauges from the years 2005 through 2010. This paper’s results demonstrate the bias correction is necessary before downscaling. The high-resolution precipitation datasets obtained with the proposed downscaling model with GWR relying on the NDVI and slope are shown to improve the accuracy of precipitation estimates. GWR exhibits more accurate downscaling results than BP_ANN coupled with the genetic algorithm (GA) in most dry and wet seasons." @default.
- W3022992207 created "2020-05-13" @default.
- W3022992207 creator A5013412813 @default.
- W3022992207 creator A5034266318 @default.
- W3022992207 creator A5062848860 @default.
- W3022992207 creator A5079659648 @default.
- W3022992207 date "2020-06-01" @default.
- W3022992207 modified "2023-10-01" @default.
- W3022992207 title "Spatial and Temporal Downscaling of TRMM Precipitation with Novel Algorithms" @default.
- W3022992207 cites W1608463673 @default.
- W3022992207 cites W1608957158 @default.
- W3022992207 cites W1833590632 @default.
- W3022992207 cites W1883380602 @default.
- W3022992207 cites W1905084962 @default.
- W3022992207 cites W1965375054 @default.
- W3022992207 cites W1965555277 @default.
- W3022992207 cites W1971794754 @default.
- W3022992207 cites W1977957486 @default.
- W3022992207 cites W1979647762 @default.
- W3022992207 cites W1985817749 @default.
- W3022992207 cites W1986097689 @default.
- W3022992207 cites W1990364733 @default.
- W3022992207 cites W1994519509 @default.
- W3022992207 cites W1995622703 @default.
- W3022992207 cites W2001129580 @default.
- W3022992207 cites W2001593107 @default.
- W3022992207 cites W2007051388 @default.
- W3022992207 cites W2008820148 @default.
- W3022992207 cites W2011091328 @default.
- W3022992207 cites W2022349500 @default.
- W3022992207 cites W2028513355 @default.
- W3022992207 cites W2030716213 @default.
- W3022992207 cites W2049934839 @default.
- W3022992207 cites W2062698821 @default.
- W3022992207 cites W2085113815 @default.
- W3022992207 cites W2087849123 @default.
- W3022992207 cites W2088432171 @default.
- W3022992207 cites W2114579308 @default.
- W3022992207 cites W2172609192 @default.
- W3022992207 cites W2201111821 @default.
- W3022992207 cites W2285509402 @default.
- W3022992207 cites W2294798173 @default.
- W3022992207 cites W2520203883 @default.
- W3022992207 cites W2769217274 @default.
- W3022992207 cites W2793745286 @default.
- W3022992207 cites W2808556264 @default.
- W3022992207 cites W2968205860 @default.
- W3022992207 cites W2991178302 @default.
- W3022992207 cites W3005813145 @default.
- W3022992207 doi "https://doi.org/10.1175/jhm-d-19-0289.1" @default.
- W3022992207 hasPublicationYear "2020" @default.
- W3022992207 type Work @default.
- W3022992207 sameAs 3022992207 @default.
- W3022992207 citedByCount "14" @default.
- W3022992207 countsByYear W30229922072020 @default.
- W3022992207 countsByYear W30229922072021 @default.
- W3022992207 countsByYear W30229922072022 @default.
- W3022992207 countsByYear W30229922072023 @default.
- W3022992207 crossrefType "journal-article" @default.
- W3022992207 hasAuthorship W3022992207A5013412813 @default.
- W3022992207 hasAuthorship W3022992207A5034266318 @default.
- W3022992207 hasAuthorship W3022992207A5062848860 @default.
- W3022992207 hasAuthorship W3022992207A5079659648 @default.
- W3022992207 hasBestOaLocation W30229922071 @default.
- W3022992207 hasConcept C107054158 @default.
- W3022992207 hasConcept C120961793 @default.
- W3022992207 hasConcept C127313418 @default.
- W3022992207 hasConcept C127413603 @default.
- W3022992207 hasConcept C146978453 @default.
- W3022992207 hasConcept C153294291 @default.
- W3022992207 hasConcept C19269812 @default.
- W3022992207 hasConcept C205649164 @default.
- W3022992207 hasConcept C39432304 @default.
- W3022992207 hasConcept C41156917 @default.
- W3022992207 hasConcept C49204034 @default.
- W3022992207 hasConcept C62649853 @default.
- W3022992207 hasConcept C75398719 @default.
- W3022992207 hasConceptScore W3022992207C107054158 @default.
- W3022992207 hasConceptScore W3022992207C120961793 @default.
- W3022992207 hasConceptScore W3022992207C127313418 @default.
- W3022992207 hasConceptScore W3022992207C127413603 @default.
- W3022992207 hasConceptScore W3022992207C146978453 @default.
- W3022992207 hasConceptScore W3022992207C153294291 @default.
- W3022992207 hasConceptScore W3022992207C19269812 @default.
- W3022992207 hasConceptScore W3022992207C205649164 @default.
- W3022992207 hasConceptScore W3022992207C39432304 @default.
- W3022992207 hasConceptScore W3022992207C41156917 @default.
- W3022992207 hasConceptScore W3022992207C49204034 @default.
- W3022992207 hasConceptScore W3022992207C62649853 @default.
- W3022992207 hasConceptScore W3022992207C75398719 @default.
- W3022992207 hasIssue "6" @default.
- W3022992207 hasLocation W30229922071 @default.
- W3022992207 hasOpenAccess W3022992207 @default.
- W3022992207 hasPrimaryLocation W30229922071 @default.
- W3022992207 hasRelatedWork W188653796 @default.
- W3022992207 hasRelatedWork W2006477439 @default.
- W3022992207 hasRelatedWork W2161549781 @default.
- W3022992207 hasRelatedWork W2353788459 @default.