Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023049649> ?p ?o ?g. }
- W3023049649 abstract "Abstract With a significant development of big data analysis and cloud-fog-edge computing, human-centered computing (HCC) has been a hot research topic worldwide. Essentially, HCC is a cross-disciplinary research domain, in which the core idea is to build an efficient interaction among persons, cyber space, and real world. Inspired by the improvement of HCC on big data analysis, we intend to involve related core and technologies to help solve one of the most important issues in the real world, i.e., flood prediction. To minimize the negative impacts brought by floods, researchers pay special attention to improve the accuracy of flood forecasting with quantity of technologies including HCC. However, historical flood data is essentially imbalanced. Imbalanced data causes machine learning classifiers to be more biased towards patterns with majority samples, resulting in poor classification of pattern with minority samples. In this paper, we propose a novel Synthetic Minority Over-sampling Technique (SMOTE)-Boost-based sparse Bayesian model to perform flood prediction with both high accuracy and robustness. The proposed model consists of three modules, namely, SMOTE-based data enhancement, AdaBoost training strategy, and sparse Bayes model construction. In SMOTE-based data enhancement, we adopt a SMOTE algorithm to effectively cover diverse data modes and generate more samples for prediction pattern with minority samples, which greatly alleviates the problem of imbalanced data by involving experts’ analysis and users’ intentions. During AdaBoost training strategy, we propose a specifically designed AdaBoost training strategy for sparse Bayesian model, which not only adaptively and inclemently increases prediction ability of Bayesian model, but also prevents its over-fitting performance. Essentially, the design of AdaBoost strategy helps keep balance between prediction ability and model complexity, which offers different but effective models over diverse rivers and users. Finally, we construct a sparse Bayesian model based on AdaBoost training strategy, which could offer flood prediction results with high rationality and robustness. We demonstrate the accuracy and effectiveness of the proposed model for flood prediction by conducting experiments on a collected dataset with several comparative methods." @default.
- W3023049649 created "2020-05-13" @default.
- W3023049649 creator A5002937692 @default.
- W3023049649 creator A5047598394 @default.
- W3023049649 creator A5053703016 @default.
- W3023049649 date "2020-04-15" @default.
- W3023049649 modified "2023-09-24" @default.
- W3023049649 title "SMOTE-Boost-based sparse Bayesian model for flood prediction" @default.
- W3023049649 cites W1481643961 @default.
- W3023049649 cites W1863684228 @default.
- W3023049649 cites W2018503939 @default.
- W3023049649 cites W2055336003 @default.
- W3023049649 cites W2074770406 @default.
- W3023049649 cites W2100085182 @default.
- W3023049649 cites W2143956628 @default.
- W3023049649 cites W2160944830 @default.
- W3023049649 cites W2302101267 @default.
- W3023049649 cites W2623181128 @default.
- W3023049649 cites W2758294595 @default.
- W3023049649 cites W2768966190 @default.
- W3023049649 cites W2770198223 @default.
- W3023049649 cites W2788228612 @default.
- W3023049649 cites W2800788706 @default.
- W3023049649 cites W2807796723 @default.
- W3023049649 cites W2883171122 @default.
- W3023049649 cites W2884269364 @default.
- W3023049649 cites W2894022047 @default.
- W3023049649 cites W2895421615 @default.
- W3023049649 cites W2895557349 @default.
- W3023049649 cites W2896380479 @default.
- W3023049649 cites W2899671720 @default.
- W3023049649 cites W2899895176 @default.
- W3023049649 cites W2900510321 @default.
- W3023049649 cites W2903211386 @default.
- W3023049649 cites W2903618681 @default.
- W3023049649 cites W2908285635 @default.
- W3023049649 cites W2909204805 @default.
- W3023049649 cites W2909387555 @default.
- W3023049649 cites W2910142630 @default.
- W3023049649 cites W2911353037 @default.
- W3023049649 cites W2911692934 @default.
- W3023049649 cites W2916106301 @default.
- W3023049649 cites W2941875011 @default.
- W3023049649 cites W2942623773 @default.
- W3023049649 cites W2946627595 @default.
- W3023049649 cites W2957717763 @default.
- W3023049649 cites W2966540897 @default.
- W3023049649 cites W4248437541 @default.
- W3023049649 doi "https://doi.org/10.1186/s13638-020-01689-2" @default.
- W3023049649 hasPublicationYear "2020" @default.
- W3023049649 type Work @default.
- W3023049649 sameAs 3023049649 @default.
- W3023049649 citedByCount "10" @default.
- W3023049649 countsByYear W30230496492020 @default.
- W3023049649 countsByYear W30230496492021 @default.
- W3023049649 countsByYear W30230496492022 @default.
- W3023049649 countsByYear W30230496492023 @default.
- W3023049649 crossrefType "journal-article" @default.
- W3023049649 hasAuthorship W3023049649A5002937692 @default.
- W3023049649 hasAuthorship W3023049649A5047598394 @default.
- W3023049649 hasAuthorship W3023049649A5053703016 @default.
- W3023049649 hasBestOaLocation W30230496491 @default.
- W3023049649 hasConcept C104317684 @default.
- W3023049649 hasConcept C107673813 @default.
- W3023049649 hasConcept C111919701 @default.
- W3023049649 hasConcept C119857082 @default.
- W3023049649 hasConcept C12267149 @default.
- W3023049649 hasConcept C124101348 @default.
- W3023049649 hasConcept C138885662 @default.
- W3023049649 hasConcept C141404830 @default.
- W3023049649 hasConcept C154945302 @default.
- W3023049649 hasConcept C185592680 @default.
- W3023049649 hasConcept C27206212 @default.
- W3023049649 hasConcept C41008148 @default.
- W3023049649 hasConcept C52001869 @default.
- W3023049649 hasConcept C55493867 @default.
- W3023049649 hasConcept C63479239 @default.
- W3023049649 hasConcept C74256435 @default.
- W3023049649 hasConcept C75684735 @default.
- W3023049649 hasConcept C79974875 @default.
- W3023049649 hasConceptScore W3023049649C104317684 @default.
- W3023049649 hasConceptScore W3023049649C107673813 @default.
- W3023049649 hasConceptScore W3023049649C111919701 @default.
- W3023049649 hasConceptScore W3023049649C119857082 @default.
- W3023049649 hasConceptScore W3023049649C12267149 @default.
- W3023049649 hasConceptScore W3023049649C124101348 @default.
- W3023049649 hasConceptScore W3023049649C138885662 @default.
- W3023049649 hasConceptScore W3023049649C141404830 @default.
- W3023049649 hasConceptScore W3023049649C154945302 @default.
- W3023049649 hasConceptScore W3023049649C185592680 @default.
- W3023049649 hasConceptScore W3023049649C27206212 @default.
- W3023049649 hasConceptScore W3023049649C41008148 @default.
- W3023049649 hasConceptScore W3023049649C52001869 @default.
- W3023049649 hasConceptScore W3023049649C55493867 @default.
- W3023049649 hasConceptScore W3023049649C63479239 @default.
- W3023049649 hasConceptScore W3023049649C74256435 @default.
- W3023049649 hasConceptScore W3023049649C75684735 @default.
- W3023049649 hasConceptScore W3023049649C79974875 @default.
- W3023049649 hasIssue "1" @default.
- W3023049649 hasLocation W30230496491 @default.