Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023099472> ?p ?o ?g. }
- W3023099472 endingPage "744" @default.
- W3023099472 startingPage "744" @default.
- W3023099472 abstract "All around the world, partial or total blindness has become a direct consequence of diabetes and hypertension. Visual disorders related to these diseases require automatic and specialized methods to detect early malformations, artifacts, or irregular structures for helping specialists in the diagnosis. This study presents an innovative methodology for detecting and evaluating retinopathies, particularly microaneurysm and hemorrhages. The method is based on a multidirectional Fractional-Order Gaussian Filters tuned by the Differential Evolution algorithm. The contrast of the microaneurysms and hemorrhages, regarding the background, is improved substantially. After that, these structures are extracted using the Kittler thresholding method under additional considerations. Then, candidate lesions are detected by removing the blood vessels and fovea pixels in the resulting image. Finally, candidate lesions are classified according to its size, shape, and intensity properties via Support Vector Machines with a radial basis function kernel. The proposed method is evaluated by using the publicly available database MESSIDOR for detecting microaneurysms. The numerical results are summarized by the averaged binary metrics of accuracy, sensitivity, and specificity giving the performance values of 0.9995, 0.7820 and 0.9998, respectively." @default.
- W3023099472 created "2020-05-13" @default.
- W3023099472 creator A5002283995 @default.
- W3023099472 creator A5021915238 @default.
- W3023099472 creator A5032952696 @default.
- W3023099472 creator A5043514066 @default.
- W3023099472 creator A5049684878 @default.
- W3023099472 creator A5086193689 @default.
- W3023099472 date "2020-05-08" @default.
- W3023099472 modified "2023-10-18" @default.
- W3023099472 title "Algorithmic Analysis of Vesselness and Blobness for Detecting Retinopathies Based on Fractional Gaussian Filters" @default.
- W3023099472 cites W1507123469 @default.
- W3023099472 cites W1595159159 @default.
- W3023099472 cites W1969496006 @default.
- W3023099472 cites W1979341999 @default.
- W3023099472 cites W1986995623 @default.
- W3023099472 cites W2006205876 @default.
- W3023099472 cites W2007125306 @default.
- W3023099472 cites W2027091505 @default.
- W3023099472 cites W2034553362 @default.
- W3023099472 cites W2034834781 @default.
- W3023099472 cites W2035194519 @default.
- W3023099472 cites W2038635676 @default.
- W3023099472 cites W2047140957 @default.
- W3023099472 cites W2060749088 @default.
- W3023099472 cites W2068858251 @default.
- W3023099472 cites W2072684660 @default.
- W3023099472 cites W2084939654 @default.
- W3023099472 cites W2125877628 @default.
- W3023099472 cites W2127322315 @default.
- W3023099472 cites W2134513663 @default.
- W3023099472 cites W2143458450 @default.
- W3023099472 cites W2161400602 @default.
- W3023099472 cites W2234307896 @default.
- W3023099472 cites W2260824816 @default.
- W3023099472 cites W2296755154 @default.
- W3023099472 cites W2305967117 @default.
- W3023099472 cites W2330219538 @default.
- W3023099472 cites W2518477744 @default.
- W3023099472 cites W2536050809 @default.
- W3023099472 cites W2576528273 @default.
- W3023099472 cites W2592571225 @default.
- W3023099472 cites W2598680349 @default.
- W3023099472 cites W2615982936 @default.
- W3023099472 cites W2770636110 @default.
- W3023099472 cites W2770827266 @default.
- W3023099472 cites W2801296592 @default.
- W3023099472 cites W2806985937 @default.
- W3023099472 cites W2884403648 @default.
- W3023099472 cites W2886433032 @default.
- W3023099472 cites W2887484873 @default.
- W3023099472 cites W2972336714 @default.
- W3023099472 cites W3012086751 @default.
- W3023099472 cites W4210654681 @default.
- W3023099472 cites W575503930 @default.
- W3023099472 doi "https://doi.org/10.3390/math8050744" @default.
- W3023099472 hasPublicationYear "2020" @default.
- W3023099472 type Work @default.
- W3023099472 sameAs 3023099472 @default.
- W3023099472 citedByCount "2" @default.
- W3023099472 countsByYear W30230994722022 @default.
- W3023099472 crossrefType "journal-article" @default.
- W3023099472 hasAuthorship W3023099472A5002283995 @default.
- W3023099472 hasAuthorship W3023099472A5021915238 @default.
- W3023099472 hasAuthorship W3023099472A5032952696 @default.
- W3023099472 hasAuthorship W3023099472A5043514066 @default.
- W3023099472 hasAuthorship W3023099472A5049684878 @default.
- W3023099472 hasAuthorship W3023099472A5086193689 @default.
- W3023099472 hasBestOaLocation W30230994721 @default.
- W3023099472 hasConcept C104317376 @default.
- W3023099472 hasConcept C106131492 @default.
- W3023099472 hasConcept C106430172 @default.
- W3023099472 hasConcept C114614502 @default.
- W3023099472 hasConcept C115961682 @default.
- W3023099472 hasConcept C119767625 @default.
- W3023099472 hasConcept C121332964 @default.
- W3023099472 hasConcept C12267149 @default.
- W3023099472 hasConcept C153180895 @default.
- W3023099472 hasConcept C154945302 @default.
- W3023099472 hasConcept C160633673 @default.
- W3023099472 hasConcept C163716315 @default.
- W3023099472 hasConcept C191178318 @default.
- W3023099472 hasConcept C2776502983 @default.
- W3023099472 hasConcept C2780929884 @default.
- W3023099472 hasConcept C31972630 @default.
- W3023099472 hasConcept C33923547 @default.
- W3023099472 hasConcept C41008148 @default.
- W3023099472 hasConcept C62520636 @default.
- W3023099472 hasConcept C65892221 @default.
- W3023099472 hasConcept C71924100 @default.
- W3023099472 hasConcept C7218915 @default.
- W3023099472 hasConcept C74193536 @default.
- W3023099472 hasConcept C9417928 @default.
- W3023099472 hasConceptScore W3023099472C104317376 @default.
- W3023099472 hasConceptScore W3023099472C106131492 @default.
- W3023099472 hasConceptScore W3023099472C106430172 @default.
- W3023099472 hasConceptScore W3023099472C114614502 @default.
- W3023099472 hasConceptScore W3023099472C115961682 @default.