Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023121504> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3023121504 endingPage "107391" @default.
- W3023121504 startingPage "107391" @default.
- W3023121504 abstract "Abstract Deep learning denoising models can automatically extract underwater heterogeneous information data features to improve denoising performance through an internal network structure. In the present study, a novel stacked convolutional sparse denoising autoencoder (SCSDA) model was proposed in this paper to complete the blind denoising task of underwater heterogeneous information data. Specifically, for the first time, the stacked sparse denoising autoencoder (SSDA) was constructed by three sparse denoising autoencoders (SDA) to extract overcomplete sparse features. Then, the output of the last encoding layer of the SSDA was used as the input of the convolutional neural network (CNN) to further extract the deep features. Finally, in order to solve the lack of the pure underwater heterogenous information data during the acquisition and transmission process, the unrelated dataset was developed to simulate the underwater heterogeneous information data as the training set in proposed SCSDA model. Compared with the existing other algorithms, the experiment results demonstrate that the proposed SCSDA model combines the advantages of SSDA and CNN, which has great blind denoising ability. It can process faster and preserves more edge features of underwater heterogeneous information data. Also, it has a certain degree of robustness and effectiveness." @default.
- W3023121504 created "2020-05-13" @default.
- W3023121504 creator A5017894252 @default.
- W3023121504 creator A5048135942 @default.
- W3023121504 creator A5072784987 @default.
- W3023121504 creator A5087092959 @default.
- W3023121504 date "2020-10-01" @default.
- W3023121504 modified "2023-09-28" @default.
- W3023121504 title "A stacked convolutional sparse denoising autoencoder model for underwater heterogeneous information data" @default.
- W3023121504 cites W1646954672 @default.
- W3023121504 cites W1982010659 @default.
- W3023121504 cites W2004376198 @default.
- W3023121504 cites W2015682713 @default.
- W3023121504 cites W2034732690 @default.
- W3023121504 cites W2048255001 @default.
- W3023121504 cites W2104763670 @default.
- W3023121504 cites W2107601051 @default.
- W3023121504 cites W2122152426 @default.
- W3023121504 cites W2128653836 @default.
- W3023121504 cites W2340292449 @default.
- W3023121504 cites W2525912607 @default.
- W3023121504 cites W2527611302 @default.
- W3023121504 cites W2594268324 @default.
- W3023121504 cites W2777142120 @default.
- W3023121504 cites W2810759149 @default.
- W3023121504 cites W2883543868 @default.
- W3023121504 cites W2910544306 @default.
- W3023121504 cites W2917650600 @default.
- W3023121504 cites W2940639592 @default.
- W3023121504 doi "https://doi.org/10.1016/j.apacoust.2020.107391" @default.
- W3023121504 hasPublicationYear "2020" @default.
- W3023121504 type Work @default.
- W3023121504 sameAs 3023121504 @default.
- W3023121504 citedByCount "11" @default.
- W3023121504 countsByYear W30231215042020 @default.
- W3023121504 countsByYear W30231215042021 @default.
- W3023121504 countsByYear W30231215042022 @default.
- W3023121504 countsByYear W30231215042023 @default.
- W3023121504 crossrefType "journal-article" @default.
- W3023121504 hasAuthorship W3023121504A5017894252 @default.
- W3023121504 hasAuthorship W3023121504A5048135942 @default.
- W3023121504 hasAuthorship W3023121504A5072784987 @default.
- W3023121504 hasAuthorship W3023121504A5087092959 @default.
- W3023121504 hasConcept C101738243 @default.
- W3023121504 hasConcept C108583219 @default.
- W3023121504 hasConcept C111368507 @default.
- W3023121504 hasConcept C11413529 @default.
- W3023121504 hasConcept C127313418 @default.
- W3023121504 hasConcept C153180895 @default.
- W3023121504 hasConcept C154945302 @default.
- W3023121504 hasConcept C157899210 @default.
- W3023121504 hasConcept C163294075 @default.
- W3023121504 hasConcept C41008148 @default.
- W3023121504 hasConcept C57273362 @default.
- W3023121504 hasConcept C81363708 @default.
- W3023121504 hasConcept C98083399 @default.
- W3023121504 hasConceptScore W3023121504C101738243 @default.
- W3023121504 hasConceptScore W3023121504C108583219 @default.
- W3023121504 hasConceptScore W3023121504C111368507 @default.
- W3023121504 hasConceptScore W3023121504C11413529 @default.
- W3023121504 hasConceptScore W3023121504C127313418 @default.
- W3023121504 hasConceptScore W3023121504C153180895 @default.
- W3023121504 hasConceptScore W3023121504C154945302 @default.
- W3023121504 hasConceptScore W3023121504C157899210 @default.
- W3023121504 hasConceptScore W3023121504C163294075 @default.
- W3023121504 hasConceptScore W3023121504C41008148 @default.
- W3023121504 hasConceptScore W3023121504C57273362 @default.
- W3023121504 hasConceptScore W3023121504C81363708 @default.
- W3023121504 hasConceptScore W3023121504C98083399 @default.
- W3023121504 hasFunder F4320321001 @default.
- W3023121504 hasFunder F4320335787 @default.
- W3023121504 hasFunder F4320338464 @default.
- W3023121504 hasLocation W30231215041 @default.
- W3023121504 hasOpenAccess W3023121504 @default.
- W3023121504 hasPrimaryLocation W30231215041 @default.
- W3023121504 hasRelatedWork W2292254049 @default.
- W3023121504 hasRelatedWork W2592385986 @default.
- W3023121504 hasRelatedWork W2732415564 @default.
- W3023121504 hasRelatedWork W2785535669 @default.
- W3023121504 hasRelatedWork W2897995864 @default.
- W3023121504 hasRelatedWork W2950353183 @default.
- W3023121504 hasRelatedWork W2998168123 @default.
- W3023121504 hasRelatedWork W3017161237 @default.
- W3023121504 hasRelatedWork W4287083450 @default.
- W3023121504 hasRelatedWork W4287995534 @default.
- W3023121504 hasVolume "167" @default.
- W3023121504 isParatext "false" @default.
- W3023121504 isRetracted "false" @default.
- W3023121504 magId "3023121504" @default.
- W3023121504 workType "article" @default.