Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023174922> ?p ?o ?g. }
- W3023174922 endingPage "986" @default.
- W3023174922 startingPage "977" @default.
- W3023174922 abstract "We propose a novel approach to breast mass classification based on deep learning models that utilize raw radio-frequency (RF) ultrasound (US) signals. US images, typically displayed by US scanners and used to develop computer-aided diagnosis systems, are reconstructed using raw RF data. However, information related to physical properties of tissues present in RF signals is partially lost due to the irreversible compression necessary to make raw data readable to the human eye. To utilize the information present in raw US data, we develop deep learning models that can automatically process small 2D patches of RF signals and their amplitude samples. We compare our approach with classification method based on the Nakagami parameter, a widely used quantitative US technique utilizing RF data amplitude samples. Our better performing deep learning model, trained using RF signals and their envelope samples, achieved good classification performance, with the area under the receiver attaining operating characteristic curve (AUC) and balanced accuracy of 0.772 and 0.710, respectively. The proposed method significantly outperformed the Nakagami parameter-based classifier, which achieved AUC and accuracy of 0.64 and 0.611, respectively. The developed deep learning models were used to generate parametric maps illustrating the level of mass malignancy. Our study presents the feasibility of using RF data for the development of deep learning breast mass classification models." @default.
- W3023174922 created "2020-05-13" @default.
- W3023174922 creator A5014928358 @default.
- W3023174922 creator A5016281068 @default.
- W3023174922 creator A5047883236 @default.
- W3023174922 creator A5084262755 @default.
- W3023174922 date "2020-07-01" @default.
- W3023174922 modified "2023-10-03" @default.
- W3023174922 title "Breast lesion classification based on ultrasonic radio-frequency signals using convolutional neural networks" @default.
- W3023174922 cites W1979727571 @default.
- W3023174922 cites W1988819287 @default.
- W3023174922 cites W2002707000 @default.
- W3023174922 cites W2011537374 @default.
- W3023174922 cites W2013004258 @default.
- W3023174922 cites W2048060899 @default.
- W3023174922 cites W2072272383 @default.
- W3023174922 cites W2072965986 @default.
- W3023174922 cites W2076863215 @default.
- W3023174922 cites W2082526668 @default.
- W3023174922 cites W2112796928 @default.
- W3023174922 cites W2117539524 @default.
- W3023174922 cites W2147800946 @default.
- W3023174922 cites W2154116060 @default.
- W3023174922 cites W2154514637 @default.
- W3023174922 cites W2253463944 @default.
- W3023174922 cites W2280059135 @default.
- W3023174922 cites W2509685700 @default.
- W3023174922 cites W2521714275 @default.
- W3023174922 cites W2587686582 @default.
- W3023174922 cites W2725008604 @default.
- W3023174922 cites W2740028789 @default.
- W3023174922 cites W2741907166 @default.
- W3023174922 cites W2744692634 @default.
- W3023174922 cites W2753140741 @default.
- W3023174922 cites W2784257876 @default.
- W3023174922 cites W2793956967 @default.
- W3023174922 cites W2801370692 @default.
- W3023174922 cites W2807768065 @default.
- W3023174922 cites W2895914990 @default.
- W3023174922 cites W2906658447 @default.
- W3023174922 cites W2906785117 @default.
- W3023174922 cites W2917207358 @default.
- W3023174922 cites W2919763858 @default.
- W3023174922 cites W2952342791 @default.
- W3023174922 cites W2989195588 @default.
- W3023174922 cites W2990773892 @default.
- W3023174922 cites W2991497728 @default.
- W3023174922 doi "https://doi.org/10.1016/j.bbe.2020.04.002" @default.
- W3023174922 hasPublicationYear "2020" @default.
- W3023174922 type Work @default.
- W3023174922 sameAs 3023174922 @default.
- W3023174922 citedByCount "14" @default.
- W3023174922 countsByYear W30231749222021 @default.
- W3023174922 countsByYear W30231749222022 @default.
- W3023174922 countsByYear W30231749222023 @default.
- W3023174922 crossrefType "journal-article" @default.
- W3023174922 hasAuthorship W3023174922A5014928358 @default.
- W3023174922 hasAuthorship W3023174922A5016281068 @default.
- W3023174922 hasAuthorship W3023174922A5047883236 @default.
- W3023174922 hasAuthorship W3023174922A5084262755 @default.
- W3023174922 hasConcept C105795698 @default.
- W3023174922 hasConcept C108583219 @default.
- W3023174922 hasConcept C11413529 @default.
- W3023174922 hasConcept C115098869 @default.
- W3023174922 hasConcept C117251300 @default.
- W3023174922 hasConcept C121332964 @default.
- W3023174922 hasConcept C153180895 @default.
- W3023174922 hasConcept C154945302 @default.
- W3023174922 hasConcept C24890656 @default.
- W3023174922 hasConcept C33923547 @default.
- W3023174922 hasConcept C41008148 @default.
- W3023174922 hasConcept C50644808 @default.
- W3023174922 hasConcept C57273362 @default.
- W3023174922 hasConcept C74064498 @default.
- W3023174922 hasConcept C76155785 @default.
- W3023174922 hasConcept C81288441 @default.
- W3023174922 hasConcept C81363708 @default.
- W3023174922 hasConcept C81978471 @default.
- W3023174922 hasConceptScore W3023174922C105795698 @default.
- W3023174922 hasConceptScore W3023174922C108583219 @default.
- W3023174922 hasConceptScore W3023174922C11413529 @default.
- W3023174922 hasConceptScore W3023174922C115098869 @default.
- W3023174922 hasConceptScore W3023174922C117251300 @default.
- W3023174922 hasConceptScore W3023174922C121332964 @default.
- W3023174922 hasConceptScore W3023174922C153180895 @default.
- W3023174922 hasConceptScore W3023174922C154945302 @default.
- W3023174922 hasConceptScore W3023174922C24890656 @default.
- W3023174922 hasConceptScore W3023174922C33923547 @default.
- W3023174922 hasConceptScore W3023174922C41008148 @default.
- W3023174922 hasConceptScore W3023174922C50644808 @default.
- W3023174922 hasConceptScore W3023174922C57273362 @default.
- W3023174922 hasConceptScore W3023174922C74064498 @default.
- W3023174922 hasConceptScore W3023174922C76155785 @default.
- W3023174922 hasConceptScore W3023174922C81288441 @default.
- W3023174922 hasConceptScore W3023174922C81363708 @default.
- W3023174922 hasConceptScore W3023174922C81978471 @default.
- W3023174922 hasIssue "3" @default.
- W3023174922 hasLocation W30231749221 @default.