Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023175328> ?p ?o ?g. }
- W3023175328 endingPage "1456" @default.
- W3023175328 startingPage "1456" @default.
- W3023175328 abstract "In the context of monitoring and assessment of water consumption in the agricultural sector, the objective of this study is to build an operational approach capable of detecting irrigation events at plot scale in a near real-time scenario using Sentinel-1 (S1) data. The proposed approach is a decision tree-based method relying on the change detection in the S1 backscattering coefficients at plot scale. First, the behavior of the S1 backscattering coefficients following irrigation events has been analyzed at plot scale over three study sites located in Montpellier (southeast France), Tarbes (southwest France), and Catalonia (northeast Spain). To eliminate the uncertainty between rainfall and irrigation, the S1 synthetic aperture radar (SAR) signal and the soil moisture estimations at grid scale (10 km × 10 km) have been used. Then, a tree-like approach has been constructed to detect irrigation events at each S1 date considering additional filters to reduce ambiguities due to vegetation development linked to the growth cycle of different crops types as well as the soil surface roughness. To enhance the detection of irrigation events, a filter using the normalized differential vegetation index (NDVI) obtained from Sentinel-2 optical images has been proposed. Over the three study sites, the proposed method was applied on all possible S1 acquisitions in ascending and descending modes. The results show that 84.8% of the irrigation events occurring over agricultural plots in Montpellier have been correctly detected using the proposed method. Over the Catalonian site, the use of the ascending and descending SAR acquisition modes shows that 90.2% of the non-irrigated plots encountered no detected irrigation events whereas 72.4% of the irrigated plots had one and more detected irrigation events. Results over Catalonia also show that the proposed method allows the discrimination between irrigated and non-irrigated plots with an overall accuracy of 85.9%. In Tarbes, the analysis shows that irrigation events could still be detected even in the presence of abundant rainfall events during the summer season where two and more irrigation events have been detected for 90% of the irrigated plots. The novelty of the proposed method resides in building an effective unsupervised tool for near real-time detection of irrigation events at plot scale independent of the studied geographical context." @default.
- W3023175328 created "2020-05-13" @default.
- W3023175328 creator A5005595654 @default.
- W3023175328 creator A5028242808 @default.
- W3023175328 creator A5035101441 @default.
- W3023175328 creator A5079063911 @default.
- W3023175328 creator A5086874357 @default.
- W3023175328 creator A5088075756 @default.
- W3023175328 date "2020-05-04" @default.
- W3023175328 modified "2023-10-14" @default.
- W3023175328 title "Near Real-Time Irrigation Detection at Plot Scale Using Sentinel-1 Data" @default.
- W3023175328 cites W1606014081 @default.
- W3023175328 cites W1969701520 @default.
- W3023175328 cites W1969886996 @default.
- W3023175328 cites W1989062841 @default.
- W3023175328 cites W1991367406 @default.
- W3023175328 cites W2005844666 @default.
- W3023175328 cites W2009920381 @default.
- W3023175328 cites W2029487047 @default.
- W3023175328 cites W2037455286 @default.
- W3023175328 cites W2038971276 @default.
- W3023175328 cites W2049956485 @default.
- W3023175328 cites W2070189143 @default.
- W3023175328 cites W2072057865 @default.
- W3023175328 cites W2074288000 @default.
- W3023175328 cites W2082573650 @default.
- W3023175328 cites W2084952127 @default.
- W3023175328 cites W2090852128 @default.
- W3023175328 cites W2119572768 @default.
- W3023175328 cites W2129260795 @default.
- W3023175328 cites W2155289042 @default.
- W3023175328 cites W2228578885 @default.
- W3023175328 cites W2556096538 @default.
- W3023175328 cites W2581906016 @default.
- W3023175328 cites W2747196278 @default.
- W3023175328 cites W2766128998 @default.
- W3023175328 cites W2773793494 @default.
- W3023175328 cites W2782522152 @default.
- W3023175328 cites W2794275769 @default.
- W3023175328 cites W2796168650 @default.
- W3023175328 cites W2886493749 @default.
- W3023175328 cites W2889759488 @default.
- W3023175328 cites W2902112358 @default.
- W3023175328 cites W2903070808 @default.
- W3023175328 cites W2905204117 @default.
- W3023175328 cites W2906106297 @default.
- W3023175328 cites W2909470629 @default.
- W3023175328 cites W2911231547 @default.
- W3023175328 cites W2937220696 @default.
- W3023175328 cites W2943214363 @default.
- W3023175328 cites W2955900671 @default.
- W3023175328 cites W2963131120 @default.
- W3023175328 cites W2966647365 @default.
- W3023175328 cites W2975857752 @default.
- W3023175328 cites W2976404531 @default.
- W3023175328 cites W2999796608 @default.
- W3023175328 cites W3010879646 @default.
- W3023175328 doi "https://doi.org/10.3390/rs12091456" @default.
- W3023175328 hasPublicationYear "2020" @default.
- W3023175328 type Work @default.
- W3023175328 sameAs 3023175328 @default.
- W3023175328 citedByCount "26" @default.
- W3023175328 countsByYear W30231753282020 @default.
- W3023175328 countsByYear W30231753282021 @default.
- W3023175328 countsByYear W30231753282022 @default.
- W3023175328 countsByYear W30231753282023 @default.
- W3023175328 crossrefType "journal-article" @default.
- W3023175328 hasAuthorship W3023175328A5005595654 @default.
- W3023175328 hasAuthorship W3023175328A5028242808 @default.
- W3023175328 hasAuthorship W3023175328A5035101441 @default.
- W3023175328 hasAuthorship W3023175328A5079063911 @default.
- W3023175328 hasAuthorship W3023175328A5086874357 @default.
- W3023175328 hasAuthorship W3023175328A5088075756 @default.
- W3023175328 hasBestOaLocation W30231753281 @default.
- W3023175328 hasConcept C111368507 @default.
- W3023175328 hasConcept C127313418 @default.
- W3023175328 hasConcept C132651083 @default.
- W3023175328 hasConcept C142724271 @default.
- W3023175328 hasConcept C151730666 @default.
- W3023175328 hasConcept C1549246 @default.
- W3023175328 hasConcept C187320778 @default.
- W3023175328 hasConcept C18903297 @default.
- W3023175328 hasConcept C205649164 @default.
- W3023175328 hasConcept C2776133958 @default.
- W3023175328 hasConcept C2778755073 @default.
- W3023175328 hasConcept C2779343474 @default.
- W3023175328 hasConcept C39432304 @default.
- W3023175328 hasConcept C58640448 @default.
- W3023175328 hasConcept C62649853 @default.
- W3023175328 hasConcept C71924100 @default.
- W3023175328 hasConcept C76886044 @default.
- W3023175328 hasConcept C86803240 @default.
- W3023175328 hasConcept C87360688 @default.
- W3023175328 hasConcept C88862950 @default.
- W3023175328 hasConceptScore W3023175328C111368507 @default.
- W3023175328 hasConceptScore W3023175328C127313418 @default.
- W3023175328 hasConceptScore W3023175328C132651083 @default.
- W3023175328 hasConceptScore W3023175328C142724271 @default.