Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023182875> ?p ?o ?g. }
- W3023182875 endingPage "125040" @default.
- W3023182875 startingPage "125040" @default.
- W3023182875 abstract "Hydrological modeling is a challenging task in poorly gauged catchments, especially in developing countries like Pakistan. Open access precipitation and temperature datasets with different spatial and temporal resolutions provide alternative sources in data-scarce regions. However, individual satellite precipitation datasets (SPDs) have significant uncertainties. Motivated by data scarcity issues, significant spatial and temporal gaps in in-situ observations, and poor performance of individual SPDs in hydrological models, this study evaluates the performance of two merged precipitation datasets (MPDs) to simulate daily streamflow using Soil and Water Assessment Tool (SWAT) in Potohar Plateau, Pakistan. These two MPDs are based on Dynamic Clustered Bayesian Averaging (DCBA) and Dynamic Bayesian Model Averaging (DBMA), respectively, and have 0.25° spatial resolution and daily temporal resolution. Precipitation data from rain gauges (RGs) are also used, and results were compared with MPDs simulated streamflow. Multi-site calibration and validation are performed at seven stations, and the performance of RGs, DCBA, and DBMA in streamflow simulation was evaluated using the coefficient of determination (R2), Nash-Sutcliffe Efficiency (NS), and Percent BIAS (PBIAS). The results demonstrated that precipitation input from RGs presented better performance (very good to good) in streamflow simulation, even with its sparse distribution. The performance of DCBA showed better agreement with the results from RGs; however, DBMA presented satisfactory results on occasional bases. It is concluded from the current study that MPDs combines the advantages of individual SPDs and have higher potential for hydrological applications, significantly reduce the uncertainties of individual SPDs, and can be used as alternatives to RGs in poorly gauged or ungauged catchments." @default.
- W3023182875 created "2020-05-13" @default.
- W3023182875 creator A5047683711 @default.
- W3023182875 creator A5056314859 @default.
- W3023182875 creator A5075938029 @default.
- W3023182875 creator A5086993926 @default.
- W3023182875 date "2020-08-01" @default.
- W3023182875 modified "2023-10-16" @default.
- W3023182875 title "Hydrological evaluation of merged satellite precipitation datasets for streamflow simulation using SWAT: A case study of Potohar Plateau, Pakistan" @default.
- W3023182875 cites W1586632742 @default.
- W3023182875 cites W1836749255 @default.
- W3023182875 cites W1937570331 @default.
- W3023182875 cites W1955691646 @default.
- W3023182875 cites W1964942064 @default.
- W3023182875 cites W1979609378 @default.
- W3023182875 cites W1982901688 @default.
- W3023182875 cites W1983724666 @default.
- W3023182875 cites W1983775324 @default.
- W3023182875 cites W1991104260 @default.
- W3023182875 cites W1998577235 @default.
- W3023182875 cites W2013720052 @default.
- W3023182875 cites W2022413055 @default.
- W3023182875 cites W2033904036 @default.
- W3023182875 cites W2038694860 @default.
- W3023182875 cites W2041307865 @default.
- W3023182875 cites W2049390710 @default.
- W3023182875 cites W2058998445 @default.
- W3023182875 cites W2059646894 @default.
- W3023182875 cites W2084088630 @default.
- W3023182875 cites W2088876159 @default.
- W3023182875 cites W2090915513 @default.
- W3023182875 cites W2093713407 @default.
- W3023182875 cites W2108704675 @default.
- W3023182875 cites W2110326361 @default.
- W3023182875 cites W2111391738 @default.
- W3023182875 cites W2120716973 @default.
- W3023182875 cites W2128003492 @default.
- W3023182875 cites W2130089609 @default.
- W3023182875 cites W2131022626 @default.
- W3023182875 cites W2135782871 @default.
- W3023182875 cites W2140758095 @default.
- W3023182875 cites W2146577723 @default.
- W3023182875 cites W2150457759 @default.
- W3023182875 cites W2156598630 @default.
- W3023182875 cites W2158840489 @default.
- W3023182875 cites W2176419970 @default.
- W3023182875 cites W2191985424 @default.
- W3023182875 cites W2260021327 @default.
- W3023182875 cites W2276243945 @default.
- W3023182875 cites W2325800586 @default.
- W3023182875 cites W2485811979 @default.
- W3023182875 cites W2515322126 @default.
- W3023182875 cites W2560992186 @default.
- W3023182875 cites W2598303293 @default.
- W3023182875 cites W2611009739 @default.
- W3023182875 cites W2726176538 @default.
- W3023182875 cites W2760156223 @default.
- W3023182875 cites W2769852091 @default.
- W3023182875 cites W2775321046 @default.
- W3023182875 cites W2782759937 @default.
- W3023182875 cites W2793537155 @default.
- W3023182875 cites W2883912110 @default.
- W3023182875 cites W2890709693 @default.
- W3023182875 cites W2901185741 @default.
- W3023182875 cites W2906003851 @default.
- W3023182875 cites W2911291427 @default.
- W3023182875 cites W2939353387 @default.
- W3023182875 cites W2950827585 @default.
- W3023182875 cites W2970829862 @default.
- W3023182875 cites W2985698636 @default.
- W3023182875 cites W2998613556 @default.
- W3023182875 cites W4231426473 @default.
- W3023182875 cites W4244985180 @default.
- W3023182875 doi "https://doi.org/10.1016/j.jhydrol.2020.125040" @default.
- W3023182875 hasPublicationYear "2020" @default.
- W3023182875 type Work @default.
- W3023182875 sameAs 3023182875 @default.
- W3023182875 citedByCount "34" @default.
- W3023182875 countsByYear W30231828752020 @default.
- W3023182875 countsByYear W30231828752021 @default.
- W3023182875 countsByYear W30231828752022 @default.
- W3023182875 countsByYear W30231828752023 @default.
- W3023182875 crossrefType "journal-article" @default.
- W3023182875 hasAuthorship W3023182875A5047683711 @default.
- W3023182875 hasAuthorship W3023182875A5056314859 @default.
- W3023182875 hasAuthorship W3023182875A5075938029 @default.
- W3023182875 hasAuthorship W3023182875A5086993926 @default.
- W3023182875 hasConcept C107054158 @default.
- W3023182875 hasConcept C119666444 @default.
- W3023182875 hasConcept C121332964 @default.
- W3023182875 hasConcept C126645576 @default.
- W3023182875 hasConcept C127313418 @default.
- W3023182875 hasConcept C134306372 @default.
- W3023182875 hasConcept C153294291 @default.
- W3023182875 hasConcept C187320778 @default.
- W3023182875 hasConcept C205649164 @default.
- W3023182875 hasConcept C2780030769 @default.
- W3023182875 hasConcept C2780852570 @default.