Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023241366> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3023241366 abstract "Abstract Deep neural networks and other deep learning methods have very successfully been applied to the numerical approximation of high-dimensional nonlinear parabolic partial differential equations (PDEs), which are widely used in finance, engineering, and natural sciences. In particular, simulations indicate that algorithms based on deep learning overcome the curse of dimensionality in the numerical approximation of solutions of semilinear PDEs. For certain linear PDEs it has also been proved mathematically that deep neural networks overcome the curse of dimensionality in the numerical approximation of solutions of such linear PDEs. The key contribution of this article is to rigorously prove this for the first time for a class of nonlinear PDEs. More precisely, we prove in the case of semilinear heat equations with gradient-independent nonlinearities that the numbers of parameters of the employed deep neural networks grow at most polynomially in both the PDE dimension and the reciprocal of the prescribed approximation accuracy. Our proof relies on recently introduced full history recursive multilevel Picard approximations for semilinear PDEs." @default.
- W3023241366 created "2020-05-13" @default.
- W3023241366 creator A5030623220 @default.
- W3023241366 creator A5032342509 @default.
- W3023241366 creator A5036131671 @default.
- W3023241366 creator A5074382323 @default.
- W3023241366 date "2020-04-01" @default.
- W3023241366 modified "2023-10-01" @default.
- W3023241366 title "A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations" @default.
- W3023241366 cites W2625995436 @default.
- W3023241366 cites W2743985642 @default.
- W3023241366 cites W2749028154 @default.
- W3023241366 cites W2754833785 @default.
- W3023241366 cites W2760972773 @default.
- W3023241366 cites W2769936938 @default.
- W3023241366 cites W2803629276 @default.
- W3023241366 cites W2884714875 @default.
- W3023241366 cites W2921935427 @default.
- W3023241366 cites W2952108335 @default.
- W3023241366 cites W2958410505 @default.
- W3023241366 cites W3012471757 @default.
- W3023241366 cites W3105524653 @default.
- W3023241366 cites W3111993716 @default.
- W3023241366 doi "https://doi.org/10.1007/s42985-019-0006-9" @default.
- W3023241366 hasPublicationYear "2020" @default.
- W3023241366 type Work @default.
- W3023241366 sameAs 3023241366 @default.
- W3023241366 citedByCount "85" @default.
- W3023241366 countsByYear W30232413662019 @default.
- W3023241366 countsByYear W30232413662020 @default.
- W3023241366 countsByYear W30232413662021 @default.
- W3023241366 countsByYear W30232413662022 @default.
- W3023241366 countsByYear W30232413662023 @default.
- W3023241366 crossrefType "journal-article" @default.
- W3023241366 hasAuthorship W3023241366A5030623220 @default.
- W3023241366 hasAuthorship W3023241366A5032342509 @default.
- W3023241366 hasAuthorship W3023241366A5036131671 @default.
- W3023241366 hasAuthorship W3023241366A5074382323 @default.
- W3023241366 hasBestOaLocation W30232413661 @default.
- W3023241366 hasConcept C108583219 @default.
- W3023241366 hasConcept C111030470 @default.
- W3023241366 hasConcept C121332964 @default.
- W3023241366 hasConcept C126255220 @default.
- W3023241366 hasConcept C134306372 @default.
- W3023241366 hasConcept C154945302 @default.
- W3023241366 hasConcept C158622935 @default.
- W3023241366 hasConcept C202444582 @default.
- W3023241366 hasConcept C202787564 @default.
- W3023241366 hasConcept C28826006 @default.
- W3023241366 hasConcept C33676613 @default.
- W3023241366 hasConcept C33923547 @default.
- W3023241366 hasConcept C41008148 @default.
- W3023241366 hasConcept C48753275 @default.
- W3023241366 hasConcept C50644808 @default.
- W3023241366 hasConcept C62520636 @default.
- W3023241366 hasConcept C93779851 @default.
- W3023241366 hasConceptScore W3023241366C108583219 @default.
- W3023241366 hasConceptScore W3023241366C111030470 @default.
- W3023241366 hasConceptScore W3023241366C121332964 @default.
- W3023241366 hasConceptScore W3023241366C126255220 @default.
- W3023241366 hasConceptScore W3023241366C134306372 @default.
- W3023241366 hasConceptScore W3023241366C154945302 @default.
- W3023241366 hasConceptScore W3023241366C158622935 @default.
- W3023241366 hasConceptScore W3023241366C202444582 @default.
- W3023241366 hasConceptScore W3023241366C202787564 @default.
- W3023241366 hasConceptScore W3023241366C28826006 @default.
- W3023241366 hasConceptScore W3023241366C33676613 @default.
- W3023241366 hasConceptScore W3023241366C33923547 @default.
- W3023241366 hasConceptScore W3023241366C41008148 @default.
- W3023241366 hasConceptScore W3023241366C48753275 @default.
- W3023241366 hasConceptScore W3023241366C50644808 @default.
- W3023241366 hasConceptScore W3023241366C62520636 @default.
- W3023241366 hasConceptScore W3023241366C93779851 @default.
- W3023241366 hasFunder F4320320879 @default.
- W3023241366 hasIssue "2" @default.
- W3023241366 hasLocation W30232413661 @default.
- W3023241366 hasLocation W30232413662 @default.
- W3023241366 hasLocation W30232413663 @default.
- W3023241366 hasOpenAccess W3023241366 @default.
- W3023241366 hasPrimaryLocation W30232413661 @default.
- W3023241366 hasRelatedWork W2158244733 @default.
- W3023241366 hasRelatedWork W2343305867 @default.
- W3023241366 hasRelatedWork W3023241366 @default.
- W3023241366 hasRelatedWork W3083098003 @default.
- W3023241366 hasRelatedWork W3098175809 @default.
- W3023241366 hasRelatedWork W3111993716 @default.
- W3023241366 hasRelatedWork W3191818024 @default.
- W3023241366 hasRelatedWork W4249371619 @default.
- W3023241366 hasRelatedWork W4281553196 @default.
- W3023241366 hasRelatedWork W4283321354 @default.
- W3023241366 hasVolume "1" @default.
- W3023241366 isParatext "false" @default.
- W3023241366 isRetracted "false" @default.
- W3023241366 magId "3023241366" @default.
- W3023241366 workType "article" @default.