Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023285302> ?p ?o ?g. }
- W3023285302 endingPage "2613" @default.
- W3023285302 startingPage "2613" @default.
- W3023285302 abstract "In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random Forests for regression analysis to determine significant variables of a contamination event such as start time, end time and contaminant chemical concentration. The algorithm is based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data with sensors placed within a water supply network and selecting a most probable pollution source based on a tournament style selection between suspect nodes in a network with mentioned machine learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time, end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the algorithm’s tournament style selection for 30/30 runs for the small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small sensor network, the true contamination event scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of contamination leading to a pollution source identification, start and ending time of the event and the contaminant chemical concentration." @default.
- W3023285302 created "2020-05-13" @default.
- W3023285302 creator A5016521964 @default.
- W3023285302 creator A5040041412 @default.
- W3023285302 creator A5054160698 @default.
- W3023285302 creator A5068775374 @default.
- W3023285302 date "2020-05-03" @default.
- W3023285302 modified "2023-09-29" @default.
- W3023285302 title "A Machine Learning-based Algorithm for Water Network Contamination Source Localization" @default.
- W3023285302 cites W1965306466 @default.
- W3023285302 cites W1966082166 @default.
- W3023285302 cites W1968369117 @default.
- W3023285302 cites W2000699256 @default.
- W3023285302 cites W2019914673 @default.
- W3023285302 cites W2022538588 @default.
- W3023285302 cites W2027708387 @default.
- W3023285302 cites W2041707609 @default.
- W3023285302 cites W2064568917 @default.
- W3023285302 cites W2075933663 @default.
- W3023285302 cites W2077773302 @default.
- W3023285302 cites W2094947628 @default.
- W3023285302 cites W2095026375 @default.
- W3023285302 cites W2101174407 @default.
- W3023285302 cites W2110430907 @default.
- W3023285302 cites W2156593712 @default.
- W3023285302 cites W2175772745 @default.
- W3023285302 cites W2589278106 @default.
- W3023285302 cites W2611488387 @default.
- W3023285302 cites W2766375208 @default.
- W3023285302 cites W2767431004 @default.
- W3023285302 cites W2793280835 @default.
- W3023285302 cites W2802887558 @default.
- W3023285302 cites W2897764815 @default.
- W3023285302 cites W2911964244 @default.
- W3023285302 cites W3012267942 @default.
- W3023285302 doi "https://doi.org/10.3390/s20092613" @default.
- W3023285302 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7248744" @default.
- W3023285302 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32375289" @default.
- W3023285302 hasPublicationYear "2020" @default.
- W3023285302 type Work @default.
- W3023285302 sameAs 3023285302 @default.
- W3023285302 citedByCount "11" @default.
- W3023285302 countsByYear W30232853022020 @default.
- W3023285302 countsByYear W30232853022021 @default.
- W3023285302 countsByYear W30232853022023 @default.
- W3023285302 crossrefType "journal-article" @default.
- W3023285302 hasAuthorship W3023285302A5016521964 @default.
- W3023285302 hasAuthorship W3023285302A5040041412 @default.
- W3023285302 hasAuthorship W3023285302A5054160698 @default.
- W3023285302 hasAuthorship W3023285302A5068775374 @default.
- W3023285302 hasBestOaLocation W30232853021 @default.
- W3023285302 hasConcept C112570922 @default.
- W3023285302 hasConcept C11413529 @default.
- W3023285302 hasConcept C121332964 @default.
- W3023285302 hasConcept C127413603 @default.
- W3023285302 hasConcept C177264268 @default.
- W3023285302 hasConcept C18903297 @default.
- W3023285302 hasConcept C199360897 @default.
- W3023285302 hasConcept C2779589656 @default.
- W3023285302 hasConcept C2779662365 @default.
- W3023285302 hasConcept C2780797713 @default.
- W3023285302 hasConcept C41008148 @default.
- W3023285302 hasConcept C62520636 @default.
- W3023285302 hasConcept C62611344 @default.
- W3023285302 hasConcept C66938386 @default.
- W3023285302 hasConcept C79403827 @default.
- W3023285302 hasConcept C86803240 @default.
- W3023285302 hasConcept C87717796 @default.
- W3023285302 hasConcept C97053079 @default.
- W3023285302 hasConceptScore W3023285302C112570922 @default.
- W3023285302 hasConceptScore W3023285302C11413529 @default.
- W3023285302 hasConceptScore W3023285302C121332964 @default.
- W3023285302 hasConceptScore W3023285302C127413603 @default.
- W3023285302 hasConceptScore W3023285302C177264268 @default.
- W3023285302 hasConceptScore W3023285302C18903297 @default.
- W3023285302 hasConceptScore W3023285302C199360897 @default.
- W3023285302 hasConceptScore W3023285302C2779589656 @default.
- W3023285302 hasConceptScore W3023285302C2779662365 @default.
- W3023285302 hasConceptScore W3023285302C2780797713 @default.
- W3023285302 hasConceptScore W3023285302C41008148 @default.
- W3023285302 hasConceptScore W3023285302C62520636 @default.
- W3023285302 hasConceptScore W3023285302C62611344 @default.
- W3023285302 hasConceptScore W3023285302C66938386 @default.
- W3023285302 hasConceptScore W3023285302C79403827 @default.
- W3023285302 hasConceptScore W3023285302C86803240 @default.
- W3023285302 hasConceptScore W3023285302C87717796 @default.
- W3023285302 hasConceptScore W3023285302C97053079 @default.
- W3023285302 hasIssue "9" @default.
- W3023285302 hasLocation W30232853021 @default.
- W3023285302 hasLocation W30232853022 @default.
- W3023285302 hasLocation W30232853023 @default.
- W3023285302 hasOpenAccess W3023285302 @default.
- W3023285302 hasPrimaryLocation W30232853021 @default.
- W3023285302 hasRelatedWork W1485627940 @default.
- W3023285302 hasRelatedWork W2026039762 @default.
- W3023285302 hasRelatedWork W2068185143 @default.
- W3023285302 hasRelatedWork W228809297 @default.
- W3023285302 hasRelatedWork W2357007603 @default.