Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023289764> ?p ?o ?g. }
- W3023289764 endingPage "1557" @default.
- W3023289764 startingPage "1547" @default.
- W3023289764 abstract "In machine learning (ML), ensemble methods such as bagging, boosting, and stacking are widely-established approaches that regularly achieve top-notch predictive performance. Stacking (also called stacked generalization) is an ensemble method that combines heterogeneous base models, arranged in at least one layer, and then employs another metamodel to summarize the predictions of those models. Although it may be a highly-effective approach for increasing the predictive performance of ML, generating a stack of models from scratch can be a cumbersome trial-and-error process. This challenge stems from the enormous space of available solutions, with different sets of data instances and features that could be used for training, several algorithms to choose from, and instantiations of these algorithms using diverse parameters (i.e., models) that perform differently according to various metrics. In this work, we present a knowledge generation model, which supports ensemble learning with the use of visualization, and a visual analytics system for stacked generalization. Our system, StackGenVis, assists users in dynamically adapting performance metrics, managing data instances, selecting the most important features for a given data set, choosing a set of top-performant and diverse algorithms, and measuring the predictive performance. In consequence, our proposed tool helps users to decide between distinct models and to reduce the complexity of the resulting stack by removing overpromising and underperforming models. The applicability and effectiveness of StackGenVis are demonstrated with two use cases: a real-world healthcare data set and a collection of data related to sentiment/stance detection in texts. Finally, the tool has been evaluated through interviews with three ML experts." @default.
- W3023289764 created "2020-05-13" @default.
- W3023289764 creator A5006966951 @default.
- W3023289764 creator A5026383442 @default.
- W3023289764 creator A5055188702 @default.
- W3023289764 creator A5070488104 @default.
- W3023289764 date "2021-02-01" @default.
- W3023289764 modified "2023-10-16" @default.
- W3023289764 title "StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics" @default.
- W3023289764 cites W1592353143 @default.
- W3023289764 cites W1878565453 @default.
- W3023289764 cites W1912151884 @default.
- W3023289764 cites W1924369998 @default.
- W3023289764 cites W1959365993 @default.
- W3023289764 cites W1965998961 @default.
- W3023289764 cites W1966716734 @default.
- W3023289764 cites W1974584593 @default.
- W3023289764 cites W1976526581 @default.
- W3023289764 cites W1989505216 @default.
- W3023289764 cites W2049670925 @default.
- W3023289764 cites W2059342086 @default.
- W3023289764 cites W2073800769 @default.
- W3023289764 cites W2078749507 @default.
- W3023289764 cites W2090687959 @default.
- W3023289764 cites W2116825089 @default.
- W3023289764 cites W2127058057 @default.
- W3023289764 cites W2135577168 @default.
- W3023289764 cites W2141014056 @default.
- W3023289764 cites W2152825437 @default.
- W3023289764 cites W2158778465 @default.
- W3023289764 cites W2170505850 @default.
- W3023289764 cites W2554140915 @default.
- W3023289764 cites W2622407287 @default.
- W3023289764 cites W2648230472 @default.
- W3023289764 cites W2741657101 @default.
- W3023289764 cites W2748022024 @default.
- W3023289764 cites W2751722336 @default.
- W3023289764 cites W2763367528 @default.
- W3023289764 cites W2784118834 @default.
- W3023289764 cites W2789758093 @default.
- W3023289764 cites W2792416149 @default.
- W3023289764 cites W2796347334 @default.
- W3023289764 cites W2798571964 @default.
- W3023289764 cites W28412257 @default.
- W3023289764 cites W2886614482 @default.
- W3023289764 cites W2888611489 @default.
- W3023289764 cites W2888728157 @default.
- W3023289764 cites W2889491178 @default.
- W3023289764 cites W2891130433 @default.
- W3023289764 cites W2894167989 @default.
- W3023289764 cites W2894294331 @default.
- W3023289764 cites W2896180549 @default.
- W3023289764 cites W2896897713 @default.
- W3023289764 cites W2905064480 @default.
- W3023289764 cites W2911964244 @default.
- W3023289764 cites W2922365273 @default.
- W3023289764 cites W2941160403 @default.
- W3023289764 cites W2949973186 @default.
- W3023289764 cites W2954788759 @default.
- W3023289764 cites W2971236179 @default.
- W3023289764 cites W2973221207 @default.
- W3023289764 cites W2999309192 @default.
- W3023289764 cites W3005806855 @default.
- W3023289764 cites W3011179515 @default.
- W3023289764 cites W3013160799 @default.
- W3023289764 cites W3034069517 @default.
- W3023289764 cites W3102476541 @default.
- W3023289764 cites W3106372104 @default.
- W3023289764 doi "https://doi.org/10.1109/tvcg.2020.3030352" @default.
- W3023289764 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33048687" @default.
- W3023289764 hasPublicationYear "2021" @default.
- W3023289764 type Work @default.
- W3023289764 sameAs 3023289764 @default.
- W3023289764 citedByCount "36" @default.
- W3023289764 countsByYear W30232897642021 @default.
- W3023289764 countsByYear W30232897642022 @default.
- W3023289764 countsByYear W30232897642023 @default.
- W3023289764 crossrefType "journal-article" @default.
- W3023289764 hasAuthorship W3023289764A5006966951 @default.
- W3023289764 hasAuthorship W3023289764A5026383442 @default.
- W3023289764 hasAuthorship W3023289764A5055188702 @default.
- W3023289764 hasAuthorship W3023289764A5070488104 @default.
- W3023289764 hasBestOaLocation W30232897642 @default.
- W3023289764 hasConcept C11413529 @default.
- W3023289764 hasConcept C119857082 @default.
- W3023289764 hasConcept C119898033 @default.
- W3023289764 hasConcept C124101348 @default.
- W3023289764 hasConcept C134306372 @default.
- W3023289764 hasConcept C154945302 @default.
- W3023289764 hasConcept C177148314 @default.
- W3023289764 hasConcept C177264268 @default.
- W3023289764 hasConcept C199360897 @default.
- W3023289764 hasConcept C33923547 @default.
- W3023289764 hasConcept C36464697 @default.
- W3023289764 hasConcept C41008148 @default.
- W3023289764 hasConcept C45942800 @default.
- W3023289764 hasConcept C46686674 @default.
- W3023289764 hasConceptScore W3023289764C11413529 @default.