Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023365585> ?p ?o ?g. }
- W3023365585 endingPage "2534" @default.
- W3023365585 startingPage "2534" @default.
- W3023365585 abstract "Operational Load Monitoring consists of the real-time reading and recording of the number and level of strains and stresses during load cycles withstood by a structure in its normal operating environment, in order to make more reliable predictions about its remaining lifetime in service. This is particularly important in aeronautical and aerospace industries, where it is very relevant to extend the components useful life without compromising flight safety. Sensors, like strain gauges, should be mounted on points of the structure where highest strains or stresses are expected. However, if the structure in its normal operating environment is subjected to variable exciting forces acting in different points over time, the number of places where data will have be acquired largely increases. The main idea presented in this paper is that instead of mounting a high number of sensors, an artificial neural network can be trained on the base of finite element simulations in order to estimate the state of the structure in its most stressed points based on data acquired just by a few sensors. The model should also be validated using experimental data to confirm proper predictions of the artificial neural network. An example with an omega-stiffened composite structural panel (a typical part used in aerospace applications) is provided. Artificial neural network was trained using a high-accuracy finite element model of the structure to process data from six strain gauges and return information about the state of the panel during different load cases. The trained neural network was tested in an experimental stand and the measurements confirmed the usefulness of presented approach." @default.
- W3023365585 created "2020-05-13" @default.
- W3023365585 creator A5038025395 @default.
- W3023365585 creator A5039296097 @default.
- W3023365585 creator A5084149935 @default.
- W3023365585 creator A5088560750 @default.
- W3023365585 date "2020-04-29" @default.
- W3023365585 modified "2023-10-09" @default.
- W3023365585 title "Operational Load Monitoring of a Composite Panel Using Artificial Neural Networks" @default.
- W3023365585 cites W1968633182 @default.
- W3023365585 cites W1974179790 @default.
- W3023365585 cites W1977608468 @default.
- W3023365585 cites W2033812119 @default.
- W3023365585 cites W2053627595 @default.
- W3023365585 cites W2055281648 @default.
- W3023365585 cites W2075885267 @default.
- W3023365585 cites W2087746639 @default.
- W3023365585 cites W2088113720 @default.
- W3023365585 cites W2118845714 @default.
- W3023365585 cites W2124463933 @default.
- W3023365585 cites W2130175225 @default.
- W3023365585 cites W2155482699 @default.
- W3023365585 cites W2157381189 @default.
- W3023365585 cites W2159357605 @default.
- W3023365585 cites W2320998174 @default.
- W3023365585 cites W2497720393 @default.
- W3023365585 cites W2599916853 @default.
- W3023365585 cites W2769912520 @default.
- W3023365585 cites W2895384270 @default.
- W3023365585 cites W2969606102 @default.
- W3023365585 cites W2982247875 @default.
- W3023365585 cites W3006939269 @default.
- W3023365585 doi "https://doi.org/10.3390/s20092534" @default.
- W3023365585 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7273206" @default.
- W3023365585 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32365646" @default.
- W3023365585 hasPublicationYear "2020" @default.
- W3023365585 type Work @default.
- W3023365585 sameAs 3023365585 @default.
- W3023365585 citedByCount "6" @default.
- W3023365585 countsByYear W30233655852020 @default.
- W3023365585 countsByYear W30233655852022 @default.
- W3023365585 countsByYear W30233655852023 @default.
- W3023365585 crossrefType "journal-article" @default.
- W3023365585 hasAuthorship W3023365585A5038025395 @default.
- W3023365585 hasAuthorship W3023365585A5039296097 @default.
- W3023365585 hasAuthorship W3023365585A5084149935 @default.
- W3023365585 hasAuthorship W3023365585A5088560750 @default.
- W3023365585 hasBestOaLocation W30233655851 @default.
- W3023365585 hasConcept C111919701 @default.
- W3023365585 hasConcept C127413603 @default.
- W3023365585 hasConcept C135628077 @default.
- W3023365585 hasConcept C146978453 @default.
- W3023365585 hasConcept C154945302 @default.
- W3023365585 hasConcept C167740415 @default.
- W3023365585 hasConcept C2776247918 @default.
- W3023365585 hasConcept C41008148 @default.
- W3023365585 hasConcept C44154836 @default.
- W3023365585 hasConcept C50644808 @default.
- W3023365585 hasConcept C60584519 @default.
- W3023365585 hasConcept C66938386 @default.
- W3023365585 hasConcept C98045186 @default.
- W3023365585 hasConceptScore W3023365585C111919701 @default.
- W3023365585 hasConceptScore W3023365585C127413603 @default.
- W3023365585 hasConceptScore W3023365585C135628077 @default.
- W3023365585 hasConceptScore W3023365585C146978453 @default.
- W3023365585 hasConceptScore W3023365585C154945302 @default.
- W3023365585 hasConceptScore W3023365585C167740415 @default.
- W3023365585 hasConceptScore W3023365585C2776247918 @default.
- W3023365585 hasConceptScore W3023365585C41008148 @default.
- W3023365585 hasConceptScore W3023365585C44154836 @default.
- W3023365585 hasConceptScore W3023365585C50644808 @default.
- W3023365585 hasConceptScore W3023365585C60584519 @default.
- W3023365585 hasConceptScore W3023365585C66938386 @default.
- W3023365585 hasConceptScore W3023365585C98045186 @default.
- W3023365585 hasFunder F4320328499 @default.
- W3023365585 hasIssue "9" @default.
- W3023365585 hasLocation W30233655851 @default.
- W3023365585 hasLocation W30233655852 @default.
- W3023365585 hasLocation W30233655853 @default.
- W3023365585 hasLocation W30233655854 @default.
- W3023365585 hasLocation W30233655855 @default.
- W3023365585 hasLocation W30233655856 @default.
- W3023365585 hasOpenAccess W3023365585 @default.
- W3023365585 hasPrimaryLocation W30233655851 @default.
- W3023365585 hasRelatedWork W2350032752 @default.
- W3023365585 hasRelatedWork W2361951959 @default.
- W3023365585 hasRelatedWork W2362478917 @default.
- W3023365585 hasRelatedWork W2372548342 @default.
- W3023365585 hasRelatedWork W2377299467 @default.
- W3023365585 hasRelatedWork W2379065448 @default.
- W3023365585 hasRelatedWork W2381670429 @default.
- W3023365585 hasRelatedWork W2382095082 @default.
- W3023365585 hasRelatedWork W2968525344 @default.
- W3023365585 hasRelatedWork W3183642470 @default.
- W3023365585 hasVolume "20" @default.
- W3023365585 isParatext "false" @default.
- W3023365585 isRetracted "false" @default.
- W3023365585 magId "3023365585" @default.