Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023514908> ?p ?o ?g. }
- W3023514908 endingPage "1" @default.
- W3023514908 startingPage "1" @default.
- W3023514908 abstract "This article presents a new convolutional neural network (CNN) topology using wavelet kernels to detect and discriminate single or multiple partial discharge (PD) locations in high voltage power apparatus with increased accuracy. The method is tested on an electrical equipment model with acoustic PD sensors. A cubical tank has been emulated in the laboratory representing the equipment under test and partial discharge sources have been placed at different positions along with the required data acquisition hardware. The present scheme eliminates the requirement of separate algorithms for feature extraction and classification of the acquired PD signals. Wavelet kernels of the CNN play a crucial role in feature learning, and the proposed CNN architecture as a whole, can classify the features in a supervised manner. The performance of the proposed scheme is compared with other existing methods using the same data set. It is found that an overall accuracy of 97.64% is achieved by the proposed method, outperforming other existing methods by a significant margin of at least 5% in terms of accuracy. The developed module is a generic one and can be adapted for different high voltage electrical apparatus with similar topological structures; hence, it can be used in various ways in power industry." @default.
- W3023514908 created "2020-05-13" @default.
- W3023514908 creator A5002851409 @default.
- W3023514908 creator A5013371148 @default.
- W3023514908 creator A5037118341 @default.
- W3023514908 creator A5046892594 @default.
- W3023514908 creator A5046940335 @default.
- W3023514908 creator A5048635721 @default.
- W3023514908 creator A5061646605 @default.
- W3023514908 creator A5089982027 @default.
- W3023514908 date "2020-01-01" @default.
- W3023514908 modified "2023-10-18" @default.
- W3023514908 title "Wavelet Kernel based Convolutional Neural Network for Localization of Partial Discharge Sources within a Power Apparatus" @default.
- W3023514908 cites W1567302070 @default.
- W3023514908 cites W1985715891 @default.
- W3023514908 cites W1993398610 @default.
- W3023514908 cites W2020272411 @default.
- W3023514908 cites W2060041790 @default.
- W3023514908 cites W2098249894 @default.
- W3023514908 cites W2105435023 @default.
- W3023514908 cites W2106674414 @default.
- W3023514908 cites W2113291302 @default.
- W3023514908 cites W2140785014 @default.
- W3023514908 cites W2159349462 @default.
- W3023514908 cites W2168220058 @default.
- W3023514908 cites W2194775991 @default.
- W3023514908 cites W2461729787 @default.
- W3023514908 cites W2480826679 @default.
- W3023514908 cites W2560499269 @default.
- W3023514908 cites W2572653366 @default.
- W3023514908 cites W2593067946 @default.
- W3023514908 cites W2594448314 @default.
- W3023514908 cites W2762355244 @default.
- W3023514908 cites W2774336996 @default.
- W3023514908 cites W2789963629 @default.
- W3023514908 cites W2790259478 @default.
- W3023514908 cites W2796096089 @default.
- W3023514908 cites W2797380619 @default.
- W3023514908 cites W2944768414 @default.
- W3023514908 cites W2949908750 @default.
- W3023514908 cites W2952732520 @default.
- W3023514908 cites W2953771933 @default.
- W3023514908 cites W2954676774 @default.
- W3023514908 cites W2975131672 @default.
- W3023514908 cites W2976212097 @default.
- W3023514908 cites W2977117446 @default.
- W3023514908 cites W2982621072 @default.
- W3023514908 cites W2986687894 @default.
- W3023514908 cites W3007392443 @default.
- W3023514908 doi "https://doi.org/10.1109/tii.2020.2991686" @default.
- W3023514908 hasPublicationYear "2020" @default.
- W3023514908 type Work @default.
- W3023514908 sameAs 3023514908 @default.
- W3023514908 citedByCount "18" @default.
- W3023514908 countsByYear W30235149082020 @default.
- W3023514908 countsByYear W30235149082021 @default.
- W3023514908 countsByYear W30235149082022 @default.
- W3023514908 countsByYear W30235149082023 @default.
- W3023514908 crossrefType "journal-article" @default.
- W3023514908 hasAuthorship W3023514908A5002851409 @default.
- W3023514908 hasAuthorship W3023514908A5013371148 @default.
- W3023514908 hasAuthorship W3023514908A5037118341 @default.
- W3023514908 hasAuthorship W3023514908A5046892594 @default.
- W3023514908 hasAuthorship W3023514908A5046940335 @default.
- W3023514908 hasAuthorship W3023514908A5048635721 @default.
- W3023514908 hasAuthorship W3023514908A5061646605 @default.
- W3023514908 hasAuthorship W3023514908A5089982027 @default.
- W3023514908 hasConcept C114614502 @default.
- W3023514908 hasConcept C119599485 @default.
- W3023514908 hasConcept C119857082 @default.
- W3023514908 hasConcept C127413603 @default.
- W3023514908 hasConcept C130143024 @default.
- W3023514908 hasConcept C138885662 @default.
- W3023514908 hasConcept C153180895 @default.
- W3023514908 hasConcept C154945302 @default.
- W3023514908 hasConcept C165801399 @default.
- W3023514908 hasConcept C196216189 @default.
- W3023514908 hasConcept C24326235 @default.
- W3023514908 hasConcept C2776401178 @default.
- W3023514908 hasConcept C33923547 @default.
- W3023514908 hasConcept C41008148 @default.
- W3023514908 hasConcept C41895202 @default.
- W3023514908 hasConcept C47432892 @default.
- W3023514908 hasConcept C52622490 @default.
- W3023514908 hasConcept C74193536 @default.
- W3023514908 hasConcept C774472 @default.
- W3023514908 hasConcept C81363708 @default.
- W3023514908 hasConceptScore W3023514908C114614502 @default.
- W3023514908 hasConceptScore W3023514908C119599485 @default.
- W3023514908 hasConceptScore W3023514908C119857082 @default.
- W3023514908 hasConceptScore W3023514908C127413603 @default.
- W3023514908 hasConceptScore W3023514908C130143024 @default.
- W3023514908 hasConceptScore W3023514908C138885662 @default.
- W3023514908 hasConceptScore W3023514908C153180895 @default.
- W3023514908 hasConceptScore W3023514908C154945302 @default.
- W3023514908 hasConceptScore W3023514908C165801399 @default.
- W3023514908 hasConceptScore W3023514908C196216189 @default.
- W3023514908 hasConceptScore W3023514908C24326235 @default.