Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023521963> ?p ?o ?g. }
- W3023521963 abstract "Abstract Background Risk adjustment models are employed to prevent adverse selection, anticipate budgetary reserve needs, and offer care management services to high-risk individuals. We aimed to address two unknowns about risk adjustment: whether machine learning (ML) and inclusion of social determinants of health (SDH) indicators improve prospective risk adjustment for health plan payments. Methods We employed a 2-by-2 factorial design comparing: (i) linear regression versus ML (gradient boosting) and (ii) demographics and diagnostic codes alone, versus additional ZIP code-level SDH indicators. Healthcare claims from privately-insured US adults (2016–2017), and Census data were used for analysis. Data from 1.02 million adults were used for derivation, and data from 0.26 million to assess performance. Model performance was measured using coefficient of determination (R 2 ), discrimination (C-statistic), and mean absolute error (MAE) for the overall population, and predictive ratio and net compensation for vulnerable subgroups. We provide 95% confidence intervals (CI) around each performance measure. Results Linear regression without SDH indicators achieved moderate determination (R 2 0.327, 95% CI: 0.300, 0.353), error ($6992; 95% CI: $6889, $7094), and discrimination (C-statistic 0.703; 95% CI: 0.701, 0.705). ML without SDH indicators improved all metrics (R 2 0.388; 95% CI: 0.357, 0.420; error $6637; 95% CI: $6539, $6735; C-statistic 0.717; 95% CI: 0.715, 0.718), reducing misestimation of cost by $3.5 M per 10,000 members. Among people living in areas with high poverty, high wealth inequality, or high prevalence of uninsured, SDH indicators reduced underestimation of cost, improving the predictive ratio by 3% (~$200/person/year). Conclusions ML improved risk adjustment models and the incorporation of SDH indicators reduced underpayment in several vulnerable populations." @default.
- W3023521963 created "2020-05-13" @default.
- W3023521963 creator A5001094226 @default.
- W3023521963 creator A5005089265 @default.
- W3023521963 creator A5023259221 @default.
- W3023521963 creator A5039154483 @default.
- W3023521963 creator A5051137984 @default.
- W3023521963 creator A5055669502 @default.
- W3023521963 creator A5058410495 @default.
- W3023521963 creator A5061284854 @default.
- W3023521963 creator A5072276755 @default.
- W3023521963 creator A5088459011 @default.
- W3023521963 date "2020-05-01" @default.
- W3023521963 modified "2023-10-14" @default.
- W3023521963 title "Incorporating machine learning and social determinants of health indicators into prospective risk adjustment for health plan payments" @default.
- W3023521963 cites W1499796422 @default.
- W3023521963 cites W1591347182 @default.
- W3023521963 cites W1678356000 @default.
- W3023521963 cites W2024046085 @default.
- W3023521963 cites W2050187883 @default.
- W3023521963 cites W2053935000 @default.
- W3023521963 cites W2058416167 @default.
- W3023521963 cites W2097360283 @default.
- W3023521963 cites W2110106130 @default.
- W3023521963 cites W2114370972 @default.
- W3023521963 cites W2127204976 @default.
- W3023521963 cites W2129925362 @default.
- W3023521963 cites W2131060185 @default.
- W3023521963 cites W2139667180 @default.
- W3023521963 cites W2150346868 @default.
- W3023521963 cites W2225155599 @default.
- W3023521963 cites W2274177153 @default.
- W3023521963 cites W2328997579 @default.
- W3023521963 cites W2419498871 @default.
- W3023521963 cites W2611788484 @default.
- W3023521963 cites W2738975713 @default.
- W3023521963 cites W2743729169 @default.
- W3023521963 cites W2792340505 @default.
- W3023521963 cites W2795378578 @default.
- W3023521963 cites W2852013853 @default.
- W3023521963 cites W2886335145 @default.
- W3023521963 cites W2903962030 @default.
- W3023521963 cites W2920897817 @default.
- W3023521963 cites W2920906063 @default.
- W3023521963 cites W2981869278 @default.
- W3023521963 cites W3022436500 @default.
- W3023521963 cites W3121271037 @default.
- W3023521963 cites W3125777704 @default.
- W3023521963 cites W4231132258 @default.
- W3023521963 cites W4254057566 @default.
- W3023521963 cites W4294541781 @default.
- W3023521963 cites W4299689471 @default.
- W3023521963 doi "https://doi.org/10.1186/s12889-020-08735-0" @default.
- W3023521963 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7195714" @default.
- W3023521963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32357871" @default.
- W3023521963 hasPublicationYear "2020" @default.
- W3023521963 type Work @default.
- W3023521963 sameAs 3023521963 @default.
- W3023521963 citedByCount "17" @default.
- W3023521963 countsByYear W30235219632020 @default.
- W3023521963 countsByYear W30235219632021 @default.
- W3023521963 countsByYear W30235219632022 @default.
- W3023521963 countsByYear W30235219632023 @default.
- W3023521963 crossrefType "journal-article" @default.
- W3023521963 hasAuthorship W3023521963A5001094226 @default.
- W3023521963 hasAuthorship W3023521963A5005089265 @default.
- W3023521963 hasAuthorship W3023521963A5023259221 @default.
- W3023521963 hasAuthorship W3023521963A5039154483 @default.
- W3023521963 hasAuthorship W3023521963A5051137984 @default.
- W3023521963 hasAuthorship W3023521963A5055669502 @default.
- W3023521963 hasAuthorship W3023521963A5058410495 @default.
- W3023521963 hasAuthorship W3023521963A5061284854 @default.
- W3023521963 hasAuthorship W3023521963A5072276755 @default.
- W3023521963 hasAuthorship W3023521963A5088459011 @default.
- W3023521963 hasBestOaLocation W30235219631 @default.
- W3023521963 hasConcept C105795698 @default.
- W3023521963 hasConcept C126322002 @default.
- W3023521963 hasConcept C144024400 @default.
- W3023521963 hasConcept C149923435 @default.
- W3023521963 hasConcept C162118730 @default.
- W3023521963 hasConcept C162324750 @default.
- W3023521963 hasConcept C2908647359 @default.
- W3023521963 hasConcept C33923547 @default.
- W3023521963 hasConcept C44249647 @default.
- W3023521963 hasConcept C71924100 @default.
- W3023521963 hasConcept C89128539 @default.
- W3023521963 hasConcept C99454951 @default.
- W3023521963 hasConceptScore W3023521963C105795698 @default.
- W3023521963 hasConceptScore W3023521963C126322002 @default.
- W3023521963 hasConceptScore W3023521963C144024400 @default.
- W3023521963 hasConceptScore W3023521963C149923435 @default.
- W3023521963 hasConceptScore W3023521963C162118730 @default.
- W3023521963 hasConceptScore W3023521963C162324750 @default.
- W3023521963 hasConceptScore W3023521963C2908647359 @default.
- W3023521963 hasConceptScore W3023521963C33923547 @default.
- W3023521963 hasConceptScore W3023521963C44249647 @default.
- W3023521963 hasConceptScore W3023521963C71924100 @default.
- W3023521963 hasConceptScore W3023521963C89128539 @default.
- W3023521963 hasConceptScore W3023521963C99454951 @default.
- W3023521963 hasIssue "1" @default.