Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023598957> ?p ?o ?g. }
- W3023598957 abstract "Metabolic brain network analysis based on graph theory using FDG PET imaging is potentially useful for investigating brain activity alternation due to metabolism changes in different stages of Alzheimer's disease (AD). Most studies in constructing metabolic network were based on group-data. Here to investigate individual metabolic network abnormalities, a novel approach in building an individual metabolic network was proposed. Method First, a weighting matrix was calculated based on the interregional effect size difference of mean uptake between a single subject and an average normal controls (NC). Then the weighting matrix for a single subject was multiplied by a group-based connectivity matrix from a NC cohort. To study the performance of the proposed individual metabolic network, inter- and intra-hemispheric connectivity patterns in the groups of NC, sMCI (stable mild cognitive impairment), pMCI (progressive mild cognitive impairment) and AD using the proposed individual metabolic network were constructed and compared with those from the group-based results. The network parameters of global efficiency, clustering coefficient, lambda and gamma, and the network density score (NDS) in the default-mode network (DMN) of generated individual metabolic network were estimated and compared among the disease groups in AD. Result Our results show that the intra and inter-hemispheric connectivity patterns estimated from our individual metabolic network are similar to those from the group-based method. In particular, the key patterns of occipital-parietal inter-regional connectivity deficits detected in the groupwise network study for differentiating different disease groups in AD were also found in the individual network. A reduction trend was observed for network parameters of global efficiency and clustering coefficient, and also for the NDS from NC, sMCI, pMCI and AD. There was no significant difference between NC and sMCI for all network parameters. Conclusion We proposed a novel method in constructing the individual metabolic network using a single-subject FDG PET image and a group-based normal control connectivity matrix. The result has shown the effectiveness and feasibility of the proposed individual metabolic network in differentiating different disease groups in AD. Future study should include investigation of inter-individual variability, and the correlation of individual network features to disease severities and clinical performance." @default.
- W3023598957 created "2020-05-13" @default.
- W3023598957 creator A5011338209 @default.
- W3023598957 creator A5013491696 @default.
- W3023598957 creator A5019483124 @default.
- W3023598957 creator A5063853987 @default.
- W3023598957 date "2020-05-12" @default.
- W3023598957 modified "2023-10-16" @default.
- W3023598957 title "A Novel Individual Metabolic Brain Network for 18F-FDG PET Imaging" @default.
- W3023598957 cites W1586771686 @default.
- W3023598957 cites W1587698431 @default.
- W3023598957 cites W1966414642 @default.
- W3023598957 cites W1974764791 @default.
- W3023598957 cites W1978675410 @default.
- W3023598957 cites W1983485726 @default.
- W3023598957 cites W1983537704 @default.
- W3023598957 cites W2011541551 @default.
- W3023598957 cites W2025560784 @default.
- W3023598957 cites W2053915900 @default.
- W3023598957 cites W2055583849 @default.
- W3023598957 cites W2055757491 @default.
- W3023598957 cites W2060464767 @default.
- W3023598957 cites W2076029586 @default.
- W3023598957 cites W2076220672 @default.
- W3023598957 cites W2078524519 @default.
- W3023598957 cites W2080422990 @default.
- W3023598957 cites W2080816290 @default.
- W3023598957 cites W2089691915 @default.
- W3023598957 cites W2103717170 @default.
- W3023598957 cites W2129823286 @default.
- W3023598957 cites W2133859655 @default.
- W3023598957 cites W2142639392 @default.
- W3023598957 cites W2143285014 @default.
- W3023598957 cites W2154516913 @default.
- W3023598957 cites W2158244090 @default.
- W3023598957 cites W2160774676 @default.
- W3023598957 cites W2167822639 @default.
- W3023598957 cites W2175501639 @default.
- W3023598957 cites W2248030955 @default.
- W3023598957 cites W2290913813 @default.
- W3023598957 cites W2463513212 @default.
- W3023598957 cites W2557004459 @default.
- W3023598957 cites W2572190089 @default.
- W3023598957 cites W2609116249 @default.
- W3023598957 cites W2758410228 @default.
- W3023598957 cites W2767333668 @default.
- W3023598957 cites W2771420879 @default.
- W3023598957 cites W2802626894 @default.
- W3023598957 cites W2808651428 @default.
- W3023598957 cites W2889744718 @default.
- W3023598957 cites W2889915429 @default.
- W3023598957 cites W2945349632 @default.
- W3023598957 cites W2948815538 @default.
- W3023598957 cites W2949237195 @default.
- W3023598957 cites W2950051395 @default.
- W3023598957 cites W2991808555 @default.
- W3023598957 cites W578092267 @default.
- W3023598957 doi "https://doi.org/10.3389/fnins.2020.00344" @default.
- W3023598957 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7235322" @default.
- W3023598957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32477042" @default.
- W3023598957 hasPublicationYear "2020" @default.
- W3023598957 type Work @default.
- W3023598957 sameAs 3023598957 @default.
- W3023598957 citedByCount "15" @default.
- W3023598957 countsByYear W30235989572020 @default.
- W3023598957 countsByYear W30235989572021 @default.
- W3023598957 countsByYear W30235989572022 @default.
- W3023598957 countsByYear W30235989572023 @default.
- W3023598957 crossrefType "journal-article" @default.
- W3023598957 hasAuthorship W3023598957A5011338209 @default.
- W3023598957 hasAuthorship W3023598957A5013491696 @default.
- W3023598957 hasAuthorship W3023598957A5019483124 @default.
- W3023598957 hasAuthorship W3023598957A5063853987 @default.
- W3023598957 hasBestOaLocation W30235989571 @default.
- W3023598957 hasConcept C101810790 @default.
- W3023598957 hasConcept C126838900 @default.
- W3023598957 hasConcept C141516989 @default.
- W3023598957 hasConcept C154945302 @default.
- W3023598957 hasConcept C15744967 @default.
- W3023598957 hasConcept C169760540 @default.
- W3023598957 hasConcept C169900460 @default.
- W3023598957 hasConcept C183115368 @default.
- W3023598957 hasConcept C22047676 @default.
- W3023598957 hasConcept C41008148 @default.
- W3023598957 hasConcept C58693492 @default.
- W3023598957 hasConcept C60644358 @default.
- W3023598957 hasConcept C71924100 @default.
- W3023598957 hasConcept C73555534 @default.
- W3023598957 hasConcept C86803240 @default.
- W3023598957 hasConceptScore W3023598957C101810790 @default.
- W3023598957 hasConceptScore W3023598957C126838900 @default.
- W3023598957 hasConceptScore W3023598957C141516989 @default.
- W3023598957 hasConceptScore W3023598957C154945302 @default.
- W3023598957 hasConceptScore W3023598957C15744967 @default.
- W3023598957 hasConceptScore W3023598957C169760540 @default.
- W3023598957 hasConceptScore W3023598957C169900460 @default.
- W3023598957 hasConceptScore W3023598957C183115368 @default.
- W3023598957 hasConceptScore W3023598957C22047676 @default.
- W3023598957 hasConceptScore W3023598957C41008148 @default.
- W3023598957 hasConceptScore W3023598957C58693492 @default.