Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023641830> ?p ?o ?g. }
- W3023641830 endingPage "2717" @default.
- W3023641830 startingPage "2717" @default.
- W3023641830 abstract "Classifying the images that portray the Human Epithelial cells of type 2 (HEp-2) represents one of the most important steps in the diagnosis procedure of autoimmune diseases. Performing this classification manually represents an extremely complicated task due to the heterogeneity of these cellular images. Hence, an automated classification scheme appears to be necessary. However, the majority of the available methods prefer to utilize the supervised learning approach for this problem. The need for thousands of images labelled manually can represent a difficulty with this approach. The first contribution of this work is to demonstrate that classifying HEp-2 cell images can also be done using the unsupervised learning paradigm. Unlike the majority of the existing methods, we propose here a deep learning scheme that performs both the feature extraction and the cells’ discrimination through an end-to-end unsupervised paradigm. We propose the use of a deep convolutional autoencoder (DCAE) that performs feature extraction via an encoding–decoding scheme. At the same time, we embed in the network a clustering layer whose purpose is to automatically discriminate, during the feature learning process, the latent representations produced by the DCAE. Furthermore, we investigate how the quality of the network’s reconstruction can affect the quality of the produced representations. We have investigated the effectiveness of our method on some benchmark datasets and we demonstrate here that the unsupervised learning, when done properly, performs at the same level as the actual supervised learning-based state-of-the-art methods in terms of accuracy." @default.
- W3023641830 created "2020-05-13" @default.
- W3023641830 creator A5037514322 @default.
- W3023641830 creator A5041246106 @default.
- W3023641830 creator A5067241662 @default.
- W3023641830 date "2020-05-09" @default.
- W3023641830 modified "2023-10-07" @default.
- W3023641830 title "A Strictly Unsupervised Deep Learning Method for HEp-2 Cell Image Classification" @default.
- W3023641830 cites W1498436455 @default.
- W3023641830 cites W1578333261 @default.
- W3023641830 cites W1973985288 @default.
- W3023641830 cites W1996350067 @default.
- W3023641830 cites W1998928348 @default.
- W3023641830 cites W2004801324 @default.
- W3023641830 cites W2007442867 @default.
- W3023641830 cites W2024638964 @default.
- W3023641830 cites W2030105367 @default.
- W3023641830 cites W2056052642 @default.
- W3023641830 cites W2059272842 @default.
- W3023641830 cites W2062073991 @default.
- W3023641830 cites W2071128523 @default.
- W3023641830 cites W2100495367 @default.
- W3023641830 cites W2125310307 @default.
- W3023641830 cites W2136635436 @default.
- W3023641830 cites W2147141800 @default.
- W3023641830 cites W2150593711 @default.
- W3023641830 cites W2163352848 @default.
- W3023641830 cites W2193066333 @default.
- W3023641830 cites W2287518523 @default.
- W3023641830 cites W2789571202 @default.
- W3023641830 cites W2800128458 @default.
- W3023641830 cites W2905846897 @default.
- W3023641830 cites W2919115771 @default.
- W3023641830 cites W2963881378 @default.
- W3023641830 cites W3102042549 @default.
- W3023641830 cites W4231109964 @default.
- W3023641830 doi "https://doi.org/10.3390/s20092717" @default.
- W3023641830 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7249201" @default.
- W3023641830 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32397567" @default.
- W3023641830 hasPublicationYear "2020" @default.
- W3023641830 type Work @default.
- W3023641830 sameAs 3023641830 @default.
- W3023641830 citedByCount "10" @default.
- W3023641830 countsByYear W30236418302021 @default.
- W3023641830 countsByYear W30236418302022 @default.
- W3023641830 countsByYear W30236418302023 @default.
- W3023641830 crossrefType "journal-article" @default.
- W3023641830 hasAuthorship W3023641830A5037514322 @default.
- W3023641830 hasAuthorship W3023641830A5041246106 @default.
- W3023641830 hasAuthorship W3023641830A5067241662 @default.
- W3023641830 hasBestOaLocation W30236418301 @default.
- W3023641830 hasConcept C101738243 @default.
- W3023641830 hasConcept C108583219 @default.
- W3023641830 hasConcept C119857082 @default.
- W3023641830 hasConcept C125411270 @default.
- W3023641830 hasConcept C13280743 @default.
- W3023641830 hasConcept C136389625 @default.
- W3023641830 hasConcept C138885662 @default.
- W3023641830 hasConcept C153180895 @default.
- W3023641830 hasConcept C154945302 @default.
- W3023641830 hasConcept C185798385 @default.
- W3023641830 hasConcept C205649164 @default.
- W3023641830 hasConcept C2776401178 @default.
- W3023641830 hasConcept C41008148 @default.
- W3023641830 hasConcept C41895202 @default.
- W3023641830 hasConcept C50644808 @default.
- W3023641830 hasConcept C52622490 @default.
- W3023641830 hasConcept C57273362 @default.
- W3023641830 hasConcept C59404180 @default.
- W3023641830 hasConcept C73555534 @default.
- W3023641830 hasConcept C76155785 @default.
- W3023641830 hasConcept C8038995 @default.
- W3023641830 hasConcept C81363708 @default.
- W3023641830 hasConceptScore W3023641830C101738243 @default.
- W3023641830 hasConceptScore W3023641830C108583219 @default.
- W3023641830 hasConceptScore W3023641830C119857082 @default.
- W3023641830 hasConceptScore W3023641830C125411270 @default.
- W3023641830 hasConceptScore W3023641830C13280743 @default.
- W3023641830 hasConceptScore W3023641830C136389625 @default.
- W3023641830 hasConceptScore W3023641830C138885662 @default.
- W3023641830 hasConceptScore W3023641830C153180895 @default.
- W3023641830 hasConceptScore W3023641830C154945302 @default.
- W3023641830 hasConceptScore W3023641830C185798385 @default.
- W3023641830 hasConceptScore W3023641830C205649164 @default.
- W3023641830 hasConceptScore W3023641830C2776401178 @default.
- W3023641830 hasConceptScore W3023641830C41008148 @default.
- W3023641830 hasConceptScore W3023641830C41895202 @default.
- W3023641830 hasConceptScore W3023641830C50644808 @default.
- W3023641830 hasConceptScore W3023641830C52622490 @default.
- W3023641830 hasConceptScore W3023641830C57273362 @default.
- W3023641830 hasConceptScore W3023641830C59404180 @default.
- W3023641830 hasConceptScore W3023641830C73555534 @default.
- W3023641830 hasConceptScore W3023641830C76155785 @default.
- W3023641830 hasConceptScore W3023641830C8038995 @default.
- W3023641830 hasConceptScore W3023641830C81363708 @default.
- W3023641830 hasIssue "9" @default.
- W3023641830 hasLocation W30236418301 @default.
- W3023641830 hasLocation W30236418302 @default.