Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023643973> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3023643973 abstract "Author(s): Xie, Fangjie | Advisor(s): Xu, Shizhong | Abstract: Genome-wide association study (GWAS) has became a powerful tool for revealing the genetic architecture of complex traits in plant studies, animal research and human disease. This method involves scanning genotypes from many different samples to study the associations between genetic markers and phenotypes. With the availability of low-costing and high-throughput technology, large-scale data are provided for analysis and efficient algorithms are needed to scan up to millions markers. Large-scale genomic study also involves high-dimensional statistics, which brings out lots of difficulties in modeling and computation in practice. This dissertation addresses two problems in GWAS, that are, the computational efficiency of marker scanning and correction of Beavis effect. The interesting connection between the fixed effect and the random effect in a linear mixed model is the inspiration for the current work. The methods we proposed are fully supported theoretically and empirically. In the first half of this dissertation, we investigate the significant test of markers in GWAS and propose a method for constructing a de-shrink Ridge estimator. This enables us to scan all the markers simultaneously in one model. The de-shrink estimators and test statistic are fast to compute. They also have comparable level as the conventional GWAS approaches, such as efficient mixed model association (EMMA). We also prove that given sufficient information the de-shrink estimators are asymptotically equivalent to the fixed effect estimators in EMMA.The second half of this dissertation is focusing on correcting the bias caused by the Beavis effect in GWAS. The Beavis effect refers to a phenomenon that the average effect size of the detected locus is inflated due to statistical tests. There is an increasing interest in applying linear mixed model in GWAS and the scanned marker is typically treated as fixed effect, which is called fixed model (FM) approach. Another way to tackle the same problem is considering the marker effect as random and this method is called random model (RM) approach. However, the random term results in extra computational burden. We develop a novel random fixed approach (RFM) to relieve the computational difficulties. Taking advantage of RFM and the censoring fact, we propose an efficient way to correct the Beavis effect. We demonstrate the method in simulated dataset and real data applications." @default.
- W3023643973 created "2020-05-13" @default.
- W3023643973 creator A5034288081 @default.
- W3023643973 date "2019-01-01" @default.
- W3023643973 modified "2023-09-26" @default.
- W3023643973 title "Significance Tests for Random Effects and Correction for Bias of Estimated QTL Variances in GWAS" @default.
- W3023643973 hasPublicationYear "2019" @default.
- W3023643973 type Work @default.
- W3023643973 sameAs 3023643973 @default.
- W3023643973 citedByCount "0" @default.
- W3023643973 crossrefType "journal-article" @default.
- W3023643973 hasAuthorship W3023643973A5034288081 @default.
- W3023643973 hasConcept C104317684 @default.
- W3023643973 hasConcept C105795698 @default.
- W3023643973 hasConcept C106208931 @default.
- W3023643973 hasConcept C126322002 @default.
- W3023643973 hasConcept C135763542 @default.
- W3023643973 hasConcept C153209595 @default.
- W3023643973 hasConcept C153720581 @default.
- W3023643973 hasConcept C16012445 @default.
- W3023643973 hasConcept C168743327 @default.
- W3023643973 hasConcept C185429906 @default.
- W3023643973 hasConcept C33923547 @default.
- W3023643973 hasConcept C41008148 @default.
- W3023643973 hasConcept C54355233 @default.
- W3023643973 hasConcept C71924100 @default.
- W3023643973 hasConcept C86803240 @default.
- W3023643973 hasConcept C95190672 @default.
- W3023643973 hasConceptScore W3023643973C104317684 @default.
- W3023643973 hasConceptScore W3023643973C105795698 @default.
- W3023643973 hasConceptScore W3023643973C106208931 @default.
- W3023643973 hasConceptScore W3023643973C126322002 @default.
- W3023643973 hasConceptScore W3023643973C135763542 @default.
- W3023643973 hasConceptScore W3023643973C153209595 @default.
- W3023643973 hasConceptScore W3023643973C153720581 @default.
- W3023643973 hasConceptScore W3023643973C16012445 @default.
- W3023643973 hasConceptScore W3023643973C168743327 @default.
- W3023643973 hasConceptScore W3023643973C185429906 @default.
- W3023643973 hasConceptScore W3023643973C33923547 @default.
- W3023643973 hasConceptScore W3023643973C41008148 @default.
- W3023643973 hasConceptScore W3023643973C54355233 @default.
- W3023643973 hasConceptScore W3023643973C71924100 @default.
- W3023643973 hasConceptScore W3023643973C86803240 @default.
- W3023643973 hasConceptScore W3023643973C95190672 @default.
- W3023643973 hasLocation W30236439731 @default.
- W3023643973 hasOpenAccess W3023643973 @default.
- W3023643973 hasPrimaryLocation W30236439731 @default.
- W3023643973 hasRelatedWork W167374121 @default.
- W3023643973 hasRelatedWork W2098998213 @default.
- W3023643973 hasRelatedWork W2283883360 @default.
- W3023643973 hasRelatedWork W2312317357 @default.
- W3023643973 hasRelatedWork W2418489903 @default.
- W3023643973 hasRelatedWork W2798693654 @default.
- W3023643973 hasRelatedWork W2799229360 @default.
- W3023643973 hasRelatedWork W2827314228 @default.
- W3023643973 hasRelatedWork W2905490560 @default.
- W3023643973 hasRelatedWork W2938184882 @default.
- W3023643973 hasRelatedWork W2950643532 @default.
- W3023643973 hasRelatedWork W2963654682 @default.
- W3023643973 hasRelatedWork W2971469429 @default.
- W3023643973 hasRelatedWork W2975590425 @default.
- W3023643973 hasRelatedWork W3034845782 @default.
- W3023643973 hasRelatedWork W3094832180 @default.
- W3023643973 hasRelatedWork W3098867908 @default.
- W3023643973 hasRelatedWork W3100389567 @default.
- W3023643973 hasRelatedWork W3101263312 @default.
- W3023643973 hasRelatedWork W3102205410 @default.
- W3023643973 isParatext "false" @default.
- W3023643973 isRetracted "false" @default.
- W3023643973 magId "3023643973" @default.
- W3023643973 workType "article" @default.