Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023727289> ?p ?o ?g. }
- W3023727289 endingPage "864" @default.
- W3023727289 startingPage "853" @default.
- W3023727289 abstract "Many of our sequential activities require that behaviors must be both precisely timed and put in the proper order. This article presents a neurocomputational model based on the theoretical framework of dynamic neural fields that supports the rapid learning and flexible adaptation of coupled order–timing representations of sequential events. A key assumption is that elapsed time is encoded in the monotonic buildup of self-stabilized neural population activity representing event memory. A stable activation gradient over subpopulations carries the information of an entire sequence. With robotics applications in mind, we test the model in simulations of learning by observation paradigm, in which the cognitive agent first memorizes the order and relative timing of observed events and, subsequently, recalls the information from memory taking potential speed constraints into account. Model robustness is tested by systematically varying sequence complexity along the temporal and the ordinal dimensions. Furthermore, an adaptation rule is proposed that allows the agent to adjust in a single trial a learned timing pattern to a changing temporal context. The simulation results are discussed with respect to our goal to endow autonomous robots with the capacity to efficiently learn complex sequences with time constraints, supporting more natural human–robot interactions." @default.
- W3023727289 created "2020-05-13" @default.
- W3023727289 creator A5014349011 @default.
- W3023727289 creator A5025445248 @default.
- W3023727289 creator A5057421703 @default.
- W3023727289 creator A5059684141 @default.
- W3023727289 creator A5067490383 @default.
- W3023727289 creator A5069483545 @default.
- W3023727289 date "2021-12-01" @default.
- W3023727289 modified "2023-09-25" @default.
- W3023727289 title "Rapid Learning of Complex Sequences With Time Constraints: A Dynamic Neural Field Model" @default.
- W3023727289 cites W1639445995 @default.
- W3023727289 cites W1661597557 @default.
- W3023727289 cites W1740170058 @default.
- W3023727289 cites W1974408180 @default.
- W3023727289 cites W1979834673 @default.
- W3023727289 cites W1984383922 @default.
- W3023727289 cites W1985454926 @default.
- W3023727289 cites W1988615736 @default.
- W3023727289 cites W1996507113 @default.
- W3023727289 cites W2001485836 @default.
- W3023727289 cites W2002790098 @default.
- W3023727289 cites W2009193140 @default.
- W3023727289 cites W2015177829 @default.
- W3023727289 cites W2025220658 @default.
- W3023727289 cites W2029374903 @default.
- W3023727289 cites W2030397019 @default.
- W3023727289 cites W2030456186 @default.
- W3023727289 cites W2044179284 @default.
- W3023727289 cites W2050741203 @default.
- W3023727289 cites W2054371931 @default.
- W3023727289 cites W2055639138 @default.
- W3023727289 cites W2058545815 @default.
- W3023727289 cites W2064913240 @default.
- W3023727289 cites W2073889686 @default.
- W3023727289 cites W2085673562 @default.
- W3023727289 cites W2090805568 @default.
- W3023727289 cites W2095651702 @default.
- W3023727289 cites W2100476792 @default.
- W3023727289 cites W2108970313 @default.
- W3023727289 cites W2109370255 @default.
- W3023727289 cites W2110245380 @default.
- W3023727289 cites W2110972468 @default.
- W3023727289 cites W2119468846 @default.
- W3023727289 cites W2133828723 @default.
- W3023727289 cites W2143011663 @default.
- W3023727289 cites W2143468017 @default.
- W3023727289 cites W2147199905 @default.
- W3023727289 cites W2149158842 @default.
- W3023727289 cites W2161131019 @default.
- W3023727289 cites W2165107985 @default.
- W3023727289 cites W2167042400 @default.
- W3023727289 cites W2170531123 @default.
- W3023727289 cites W2171039108 @default.
- W3023727289 cites W2268261110 @default.
- W3023727289 cites W2327848182 @default.
- W3023727289 cites W2795979296 @default.
- W3023727289 cites W2804780080 @default.
- W3023727289 cites W2894528679 @default.
- W3023727289 cites W2902493588 @default.
- W3023727289 cites W4235749240 @default.
- W3023727289 cites W4240652275 @default.
- W3023727289 cites W4245731603 @default.
- W3023727289 cites W68693810 @default.
- W3023727289 cites W2051592981 @default.
- W3023727289 doi "https://doi.org/10.1109/tcds.2020.2991789" @default.
- W3023727289 hasPublicationYear "2021" @default.
- W3023727289 type Work @default.
- W3023727289 sameAs 3023727289 @default.
- W3023727289 citedByCount "9" @default.
- W3023727289 countsByYear W30237272892020 @default.
- W3023727289 countsByYear W30237272892021 @default.
- W3023727289 countsByYear W30237272892022 @default.
- W3023727289 countsByYear W30237272892023 @default.
- W3023727289 crossrefType "journal-article" @default.
- W3023727289 hasAuthorship W3023727289A5014349011 @default.
- W3023727289 hasAuthorship W3023727289A5025445248 @default.
- W3023727289 hasAuthorship W3023727289A5057421703 @default.
- W3023727289 hasAuthorship W3023727289A5059684141 @default.
- W3023727289 hasAuthorship W3023727289A5067490383 @default.
- W3023727289 hasAuthorship W3023727289A5069483545 @default.
- W3023727289 hasBestOaLocation W30237272892 @default.
- W3023727289 hasConcept C104317684 @default.
- W3023727289 hasConcept C119857082 @default.
- W3023727289 hasConcept C120665830 @default.
- W3023727289 hasConcept C121332964 @default.
- W3023727289 hasConcept C139807058 @default.
- W3023727289 hasConcept C151730666 @default.
- W3023727289 hasConcept C154945302 @default.
- W3023727289 hasConcept C185592680 @default.
- W3023727289 hasConcept C202444582 @default.
- W3023727289 hasConcept C2778112365 @default.
- W3023727289 hasConcept C2779343474 @default.
- W3023727289 hasConcept C2779662365 @default.
- W3023727289 hasConcept C33923547 @default.
- W3023727289 hasConcept C40506919 @default.
- W3023727289 hasConcept C41008148 @default.
- W3023727289 hasConcept C50644808 @default.