Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023786143> ?p ?o ?g. }
- W3023786143 endingPage "1023" @default.
- W3023786143 startingPage "1014" @default.
- W3023786143 abstract "ConspectusThe ocean surface serves as a source and sink for a diverse set of reactive trace gases in the atmosphere, including volatile organic compounds (VOCs), reactive halogens, and oxidized and reduced nitrogen compounds. The exchange of reactive trace gases between the atmosphere and ocean has been shown to alter atmospheric oxidant concentrations and drive particle nucleation and growth. Uncertainties in cloud radiative forcing and aerosol–cloud interactions are among the largest uncertainties in current global climate models. Climate models are particularly sensitive to cloud cover over the remote ocean due to large changes in albedo between the ocean surface and cloud tops. Oceanic emissions contribute to cloud condensation nuclei concentrations, either through the direct emission of particles during wave breaking or through the formation of secondary aerosol particles following the emission of reactive gas-phase compounds. Despite generally small and diffuse oceanic emission rates for reactive trace gases, it has been shown that oxidant and particle number concentrations are acutely sensitive to air–sea trace gas exchange rates and the chemical composition of emitted species. To date, field measurements of air–sea reactive gas exchange have focused primarily on the emission of gases of biological origin, such as dimethyl sulfide (DMS). While DMS emissions are relatively well constrained, the gas-phase oxidation that connects DMS to sulfate aerosol is less well understood. Recent laboratory measurements suggest that heterogeneous and photochemical reactions occurring at the air–sea interface can also lead to the production and emission of a wide array of reactive VOC. When laboratory-based measurements are used to derive global scale emissions, the calculated sea-to-air fluxes of reactive VOC generated from heterogeneous and photochemical processes are comparable or larger in magnitude to the sea-to-air flux of DMS. It is not yet clear how the mechanisms proposed in these laboratory experiments translate to atmospheric conditions. The proposed abiotic emissions are also a potential source of VOC in regions of low biological activity, which carries important implications for regional and global modeling.This Account reviews recent laboratory and field experiments of biotic and abiotic ocean VOC emissions, with a specific focus on exploring open questions related to proposed abiotic reactive VOC emissions and the impact of including a large, abiotic VOC emission source on atmospheric oxidants and aerosol particles. To date, abiotic emissions are not typically included in global chemical transport models. The proposed abiotic emissions mechanisms discussed here have the potential to drive significant changes to current understanding of chemistry in the marine atmosphere if present at the magnitudes suggested by laboratory studies. In order to validate their proposed significance, a coordinated set of laboratory, field, and modeling studies under ocean-relevant conditions are necessary." @default.
- W3023786143 created "2020-05-13" @default.
- W3023786143 creator A5032791272 @default.
- W3023786143 creator A5075545718 @default.
- W3023786143 date "2020-05-05" @default.
- W3023786143 modified "2023-10-14" @default.
- W3023786143 title "Reactive VOC Production from Photochemical and Heterogeneous Reactions Occurring at the Air–Ocean Interface" @default.
- W3023786143 cites W1070327768 @default.
- W3023786143 cites W1130797424 @default.
- W3023786143 cites W158061037 @default.
- W3023786143 cites W1799273811 @default.
- W3023786143 cites W1921302553 @default.
- W3023786143 cites W1982254235 @default.
- W3023786143 cites W1983705301 @default.
- W3023786143 cites W1984240691 @default.
- W3023786143 cites W1985364273 @default.
- W3023786143 cites W1985636284 @default.
- W3023786143 cites W1987449184 @default.
- W3023786143 cites W1990740656 @default.
- W3023786143 cites W1991199950 @default.
- W3023786143 cites W1998157624 @default.
- W3023786143 cites W2025498983 @default.
- W3023786143 cites W2027755449 @default.
- W3023786143 cites W2034048706 @default.
- W3023786143 cites W2036114027 @default.
- W3023786143 cites W2041509982 @default.
- W3023786143 cites W2042537553 @default.
- W3023786143 cites W2045129899 @default.
- W3023786143 cites W2045617521 @default.
- W3023786143 cites W2068404302 @default.
- W3023786143 cites W2071512373 @default.
- W3023786143 cites W2084728522 @default.
- W3023786143 cites W2086850772 @default.
- W3023786143 cites W2092491309 @default.
- W3023786143 cites W2106815475 @default.
- W3023786143 cites W2106976345 @default.
- W3023786143 cites W2108039803 @default.
- W3023786143 cites W2109940975 @default.
- W3023786143 cites W2111495418 @default.
- W3023786143 cites W2115497447 @default.
- W3023786143 cites W2123158779 @default.
- W3023786143 cites W2126479450 @default.
- W3023786143 cites W2127055282 @default.
- W3023786143 cites W2130975189 @default.
- W3023786143 cites W2132507792 @default.
- W3023786143 cites W2140869764 @default.
- W3023786143 cites W2149004708 @default.
- W3023786143 cites W2150310640 @default.
- W3023786143 cites W2156631100 @default.
- W3023786143 cites W2157203601 @default.
- W3023786143 cites W2163602826 @default.
- W3023786143 cites W2164783694 @default.
- W3023786143 cites W2165608238 @default.
- W3023786143 cites W2168186029 @default.
- W3023786143 cites W2170765635 @default.
- W3023786143 cites W2201973567 @default.
- W3023786143 cites W2324782103 @default.
- W3023786143 cites W2473740365 @default.
- W3023786143 cites W2508955941 @default.
- W3023786143 cites W2511684201 @default.
- W3023786143 cites W2527266472 @default.
- W3023786143 cites W2565780815 @default.
- W3023786143 cites W2594117434 @default.
- W3023786143 cites W2605873390 @default.
- W3023786143 cites W2605989784 @default.
- W3023786143 cites W2619711511 @default.
- W3023786143 cites W2741149098 @default.
- W3023786143 cites W2756734372 @default.
- W3023786143 cites W2808638327 @default.
- W3023786143 cites W2886838643 @default.
- W3023786143 cites W2892258720 @default.
- W3023786143 cites W2942770472 @default.
- W3023786143 cites W2947495205 @default.
- W3023786143 cites W2968549074 @default.
- W3023786143 cites W2979311043 @default.
- W3023786143 cites W2980739245 @default.
- W3023786143 cites W2998194610 @default.
- W3023786143 cites W3007487957 @default.
- W3023786143 cites W4243224337 @default.
- W3023786143 cites W835612049 @default.
- W3023786143 doi "https://doi.org/10.1021/acs.accounts.0c00095" @default.
- W3023786143 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32369349" @default.
- W3023786143 hasPublicationYear "2020" @default.
- W3023786143 type Work @default.
- W3023786143 sameAs 3023786143 @default.
- W3023786143 citedByCount "27" @default.
- W3023786143 countsByYear W30237861432021 @default.
- W3023786143 countsByYear W30237861432022 @default.
- W3023786143 countsByYear W30237861432023 @default.
- W3023786143 crossrefType "journal-article" @default.
- W3023786143 hasAuthorship W3023786143A5032791272 @default.
- W3023786143 hasAuthorship W3023786143A5075545718 @default.
- W3023786143 hasConcept C107872376 @default.
- W3023786143 hasConcept C116119225 @default.
- W3023786143 hasConcept C127313418 @default.
- W3023786143 hasConcept C130047971 @default.
- W3023786143 hasConcept C178790620 @default.
- W3023786143 hasConcept C185592680 @default.