Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023858750> ?p ?o ?g. }
- W3023858750 endingPage "10011" @default.
- W3023858750 startingPage "10000" @default.
- W3023858750 abstract "This paper presents a deep learning model 'PP-Net' which is the first of its kind, having the capability to estimate the physiological parameters: Diastolic blood pressure (DBP), Systolic blood pressure (SBP), and Heart rate (HR) simultaneously from the same network using a single channel PPG signal. The proposed model is designed by exploiting the deep learning framework of Long-term Recurrent Convolutional Network (LRCN), exhibiting inherent ability of feature extraction, thereby, eliminating the cost effective steps of feature selection and extraction, making less-complex for deployment on resource constrained platforms such as mobile platforms. The performance demonstration of the PP-Net is done on a larger and publically available MIMIC-II database. We achieved an average NMAE of 0.09 (DBP) and 0.04 (SBP) mmHg for BP, and 0.046 bpm for HR estimation on total population of 1557 critically ill subjects. The accurate estimation of HR and BP on a larger population compared to the existing methods, demonstrated the effectiveness of our proposed deep learning framework. The accurate evaluation on a huge population with CVD complications, validates the robustness of the proposed framework in pervasive healthcare monitoring especially cardiac and stroke rehabilitation monitoring." @default.
- W3023858750 created "2020-05-13" @default.
- W3023858750 creator A5006208128 @default.
- W3023858750 creator A5044085104 @default.
- W3023858750 creator A5059843828 @default.
- W3023858750 creator A5060076901 @default.
- W3023858750 date "2020-09-01" @default.
- W3023858750 modified "2023-10-16" @default.
- W3023858750 title "PP-Net: A Deep Learning Framework for PPG-Based Blood Pressure and Heart Rate Estimation" @default.
- W3023858750 cites W2005741801 @default.
- W3023858750 cites W2042892587 @default.
- W3023858750 cites W2046788142 @default.
- W3023858750 cites W2056908882 @default.
- W3023858750 cites W2151713296 @default.
- W3023858750 cites W2204818998 @default.
- W3023858750 cites W2288945889 @default.
- W3023858750 cites W2292374408 @default.
- W3023858750 cites W2431637923 @default.
- W3023858750 cites W2533468819 @default.
- W3023858750 cites W2534385885 @default.
- W3023858750 cites W2538561053 @default.
- W3023858750 cites W2538703333 @default.
- W3023858750 cites W2557308490 @default.
- W3023858750 cites W2561981131 @default.
- W3023858750 cites W2563686712 @default.
- W3023858750 cites W2588671571 @default.
- W3023858750 cites W2589757813 @default.
- W3023858750 cites W2592075940 @default.
- W3023858750 cites W2610332124 @default.
- W3023858750 cites W2626982355 @default.
- W3023858750 cites W2753969215 @default.
- W3023858750 cites W2758839352 @default.
- W3023858750 cites W2790680409 @default.
- W3023858750 cites W2794942382 @default.
- W3023858750 cites W2802969504 @default.
- W3023858750 cites W2884780389 @default.
- W3023858750 cites W2886184676 @default.
- W3023858750 cites W2888894984 @default.
- W3023858750 cites W2894956427 @default.
- W3023858750 cites W2895052349 @default.
- W3023858750 cites W2898584322 @default.
- W3023858750 cites W2901204862 @default.
- W3023858750 cites W2910830939 @default.
- W3023858750 cites W2911012145 @default.
- W3023858750 cites W2916879374 @default.
- W3023858750 cites W2917448342 @default.
- W3023858750 cites W2921358727 @default.
- W3023858750 cites W2942137712 @default.
- W3023858750 cites W2942806139 @default.
- W3023858750 cites W2943541732 @default.
- W3023858750 cites W2956390755 @default.
- W3023858750 cites W2957102366 @default.
- W3023858750 cites W2962182608 @default.
- W3023858750 cites W2963791745 @default.
- W3023858750 doi "https://doi.org/10.1109/jsen.2020.2990864" @default.
- W3023858750 hasPublicationYear "2020" @default.
- W3023858750 type Work @default.
- W3023858750 sameAs 3023858750 @default.
- W3023858750 citedByCount "85" @default.
- W3023858750 countsByYear W30238587502021 @default.
- W3023858750 countsByYear W30238587502022 @default.
- W3023858750 countsByYear W30238587502023 @default.
- W3023858750 crossrefType "journal-article" @default.
- W3023858750 hasAuthorship W3023858750A5006208128 @default.
- W3023858750 hasAuthorship W3023858750A5044085104 @default.
- W3023858750 hasAuthorship W3023858750A5059843828 @default.
- W3023858750 hasAuthorship W3023858750A5060076901 @default.
- W3023858750 hasConcept C104317684 @default.
- W3023858750 hasConcept C105339364 @default.
- W3023858750 hasConcept C108583219 @default.
- W3023858750 hasConcept C111919701 @default.
- W3023858750 hasConcept C119857082 @default.
- W3023858750 hasConcept C126322002 @default.
- W3023858750 hasConcept C153180895 @default.
- W3023858750 hasConcept C154945302 @default.
- W3023858750 hasConcept C185592680 @default.
- W3023858750 hasConcept C2908647359 @default.
- W3023858750 hasConcept C41008148 @default.
- W3023858750 hasConcept C52622490 @default.
- W3023858750 hasConcept C55493867 @default.
- W3023858750 hasConcept C63479239 @default.
- W3023858750 hasConcept C71924100 @default.
- W3023858750 hasConcept C84393581 @default.
- W3023858750 hasConcept C99454951 @default.
- W3023858750 hasConceptScore W3023858750C104317684 @default.
- W3023858750 hasConceptScore W3023858750C105339364 @default.
- W3023858750 hasConceptScore W3023858750C108583219 @default.
- W3023858750 hasConceptScore W3023858750C111919701 @default.
- W3023858750 hasConceptScore W3023858750C119857082 @default.
- W3023858750 hasConceptScore W3023858750C126322002 @default.
- W3023858750 hasConceptScore W3023858750C153180895 @default.
- W3023858750 hasConceptScore W3023858750C154945302 @default.
- W3023858750 hasConceptScore W3023858750C185592680 @default.
- W3023858750 hasConceptScore W3023858750C2908647359 @default.
- W3023858750 hasConceptScore W3023858750C41008148 @default.
- W3023858750 hasConceptScore W3023858750C52622490 @default.
- W3023858750 hasConceptScore W3023858750C55493867 @default.
- W3023858750 hasConceptScore W3023858750C63479239 @default.