Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023923911> ?p ?o ?g. }
- W3023923911 endingPage "1855" @default.
- W3023923911 startingPage "1842" @default.
- W3023923911 abstract "The automatic extraction of building outlines from high-resolution images is an important and challenging task. Convolutional neural networks have shown excellent results compared with traditional building extraction methods because of their ability to extract high-level abstract features from images. However, it is difficult to fully utilize the multiple features of current building extraction methods; consequently, the resulting building boundaries are irregular. To overcome these limitations, we propose a method for extracting buildings from high-resolution images using a multifeature convolutional neural network (MFCNN) and morphological filtering. Our method consists of two steps. First, the MFCNN, which consists of residual connected unit, dilated perception unit, and pyramid aggregation unit, is used to achieve pixel-level segmentation of the buildings. Second, morphological filtering is used to optimize the building boundaries, improve the boundary regularity, and obtain refined building boundaries. The Massachusetts and Inria datasets are selected for experimental analysis. Under the same experimental conditions, the extraction results achieved with the proposed MFCNN are compared with the results of other deep learning models that have been commonly used in recent years: FCN-8s, SegNet, and U-Net. The results on both datasets reveal that the proposed model improves the F1-score by 3.31%–5.99%, increases the overall accuracy (OA) by 1.85%–3.07%, and increases the intersection over union (IOU) by 3.47%–8.82%. These findings illustrate that the proposed method is effective at extracting buildings from complex scenes." @default.
- W3023923911 created "2020-05-13" @default.
- W3023923911 creator A5002320979 @default.
- W3023923911 creator A5031000779 @default.
- W3023923911 creator A5036993891 @default.
- W3023923911 creator A5039763333 @default.
- W3023923911 creator A5079201626 @default.
- W3023923911 creator A5079521507 @default.
- W3023923911 creator A5080485606 @default.
- W3023923911 creator A5083261303 @default.
- W3023923911 date "2020-01-01" @default.
- W3023923911 modified "2023-10-16" @default.
- W3023923911 title "Refined Extraction Of Building Outlines From High-Resolution Remote Sensing Imagery Based on a Multifeature Convolutional Neural Network and Morphological Filtering" @default.
- W3023923911 cites W1973644502 @default.
- W3023923911 cites W1976827068 @default.
- W3023923911 cites W2016943428 @default.
- W3023923911 cites W2017745767 @default.
- W3023923911 cites W2018839022 @default.
- W3023923911 cites W2036376559 @default.
- W3023923911 cites W2038771072 @default.
- W3023923911 cites W2061421991 @default.
- W3023923911 cites W2068730032 @default.
- W3023923911 cites W2076131212 @default.
- W3023923911 cites W2078478672 @default.
- W3023923911 cites W2087330236 @default.
- W3023923911 cites W2100495367 @default.
- W3023923911 cites W2106587382 @default.
- W3023923911 cites W2122585011 @default.
- W3023923911 cites W2136922672 @default.
- W3023923911 cites W2147768505 @default.
- W3023923911 cites W2155910279 @default.
- W3023923911 cites W2160754664 @default.
- W3023923911 cites W2326674917 @default.
- W3023923911 cites W2329412872 @default.
- W3023923911 cites W2412782625 @default.
- W3023923911 cites W2503140068 @default.
- W3023923911 cites W2520578523 @default.
- W3023923911 cites W2551397753 @default.
- W3023923911 cites W2570837606 @default.
- W3023923911 cites W2592929672 @default.
- W3023923911 cites W2609402060 @default.
- W3023923911 cites W2623490820 @default.
- W3023923911 cites W2747352641 @default.
- W3023923911 cites W2755226765 @default.
- W3023923911 cites W2800388963 @default.
- W3023923911 cites W2888799854 @default.
- W3023923911 cites W2888889084 @default.
- W3023923911 cites W2890554472 @default.
- W3023923911 cites W2897593716 @default.
- W3023923911 cites W2897936062 @default.
- W3023923911 cites W2902036000 @default.
- W3023923911 cites W2905113129 @default.
- W3023923911 cites W2908853082 @default.
- W3023923911 cites W2922395231 @default.
- W3023923911 cites W2938425859 @default.
- W3023923911 cites W2943781490 @default.
- W3023923911 cites W2962140336 @default.
- W3023923911 cites W2963150697 @default.
- W3023923911 cites W2963881378 @default.
- W3023923911 cites W2964309882 @default.
- W3023923911 cites W2972623730 @default.
- W3023923911 cites W3101640299 @default.
- W3023923911 doi "https://doi.org/10.1109/jstars.2020.2991391" @default.
- W3023923911 hasPublicationYear "2020" @default.
- W3023923911 type Work @default.
- W3023923911 sameAs 3023923911 @default.
- W3023923911 citedByCount "41" @default.
- W3023923911 countsByYear W30239239112020 @default.
- W3023923911 countsByYear W30239239112021 @default.
- W3023923911 countsByYear W30239239112022 @default.
- W3023923911 countsByYear W30239239112023 @default.
- W3023923911 crossrefType "journal-article" @default.
- W3023923911 hasAuthorship W3023923911A5002320979 @default.
- W3023923911 hasAuthorship W3023923911A5031000779 @default.
- W3023923911 hasAuthorship W3023923911A5036993891 @default.
- W3023923911 hasAuthorship W3023923911A5039763333 @default.
- W3023923911 hasAuthorship W3023923911A5079201626 @default.
- W3023923911 hasAuthorship W3023923911A5079521507 @default.
- W3023923911 hasAuthorship W3023923911A5080485606 @default.
- W3023923911 hasAuthorship W3023923911A5083261303 @default.
- W3023923911 hasBestOaLocation W30239239111 @default.
- W3023923911 hasConcept C127313418 @default.
- W3023923911 hasConcept C153180895 @default.
- W3023923911 hasConcept C154945302 @default.
- W3023923911 hasConcept C185592680 @default.
- W3023923911 hasConcept C205372480 @default.
- W3023923911 hasConcept C3020199158 @default.
- W3023923911 hasConcept C31972630 @default.
- W3023923911 hasConcept C41008148 @default.
- W3023923911 hasConcept C43617362 @default.
- W3023923911 hasConcept C4725764 @default.
- W3023923911 hasConcept C52622490 @default.
- W3023923911 hasConcept C62649853 @default.
- W3023923911 hasConcept C81363708 @default.
- W3023923911 hasConceptScore W3023923911C127313418 @default.
- W3023923911 hasConceptScore W3023923911C153180895 @default.
- W3023923911 hasConceptScore W3023923911C154945302 @default.
- W3023923911 hasConceptScore W3023923911C185592680 @default.