Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023967513> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3023967513 endingPage "468" @default.
- W3023967513 startingPage "399" @default.
- W3023967513 abstract "Abstract For a finite subgroup $$Gamma subset mathrm {SL}(2,mathbb {C})$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>Γ</mml:mi> <mml:mo>⊂</mml:mo> <mml:mi>SL</mml:mi> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>C</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> and for $$nge 1$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , we use variation of GIT quotient for Nakajima quiver varieties to study the birational geometry of the Hilbert scheme of n points on the minimal resolution S of the Kleinian singularity $$mathbb {C}^2/Gamma $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>/</mml:mo> <mml:mi>Γ</mml:mi> </mml:mrow> </mml:math> . It is well known that $$X:={{,mathrm{{mathrm {Hilb}}},}}^{[n]}(S)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mrow> <mml:mspace /> <mml:mi>Hilb</mml:mi> <mml:mspace /> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>n</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>S</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is a projective, crepant resolution of the symplectic singularity $$mathbb {C}^{2n}/Gamma _n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>Γ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> , where $$Gamma _n=Gamma wr mathfrak {S}_n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>Γ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>Γ</mml:mi> <mml:mo>≀</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> is the wreath product. We prove that every projective, crepant resolution of $$mathbb {C}^{2n}/Gamma _n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>Γ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> can be realised as the fine moduli space of $$theta $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>θ</mml:mi> </mml:math> -stable $$Pi $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Π</mml:mi> </mml:math> -modules for a fixed dimension vector, where $$Pi $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Π</mml:mi> </mml:math> is the framed preprojective algebra of $$Gamma $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Γ</mml:mi> </mml:math> and $$theta $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>θ</mml:mi> </mml:math> is a choice of generic stability condition. Our approach uses the linearisation map from GIT to relate wall crossing in the space of $$theta $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>θ</mml:mi> </mml:math> -stability conditions to birational transformations of X over $$mathbb {C}^{2n}/Gamma _n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>Γ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> . As a corollary, we describe completely the ample and movable cones of X over $$mathbb {C}^{2n}/Gamma _n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>Γ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> , and show that the Mori chamber decomposition of the movable cone is determined by an extended Catalan hyperplane arrangement of the ADE root system associated to $$Gamma $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Γ</mml:mi> </mml:math> by the McKay correspondence. In the appendix, we show that morphisms of quiver varieties induced by variation of GIT quotient are semismall, generalising a result of Nakajima in the case where the quiver variety is smooth." @default.
- W3023967513 created "2020-05-13" @default.
- W3023967513 creator A5015968105 @default.
- W3023967513 creator A5024172053 @default.
- W3023967513 date "2020-04-30" @default.
- W3023967513 modified "2023-09-28" @default.
- W3023967513 title "Birational geometry of symplectic quotient singularities" @default.
- W3023967513 cites W1489528140 @default.
- W3023967513 cites W1491760658 @default.
- W3023967513 cites W1570900291 @default.
- W3023967513 cites W1584927588 @default.
- W3023967513 cites W1978140832 @default.
- W3023967513 cites W1979875326 @default.
- W3023967513 cites W1986936481 @default.
- W3023967513 cites W2001311331 @default.
- W3023967513 cites W2004167162 @default.
- W3023967513 cites W2004557338 @default.
- W3023967513 cites W2029126093 @default.
- W3023967513 cites W2031066950 @default.
- W3023967513 cites W2048064864 @default.
- W3023967513 cites W2063588500 @default.
- W3023967513 cites W2066347359 @default.
- W3023967513 cites W2068662463 @default.
- W3023967513 cites W2071192188 @default.
- W3023967513 cites W2073412179 @default.
- W3023967513 cites W2080785559 @default.
- W3023967513 cites W2101769805 @default.
- W3023967513 cites W2108692312 @default.
- W3023967513 cites W2139972197 @default.
- W3023967513 cites W2152473637 @default.
- W3023967513 cites W2169396111 @default.
- W3023967513 cites W2236786003 @default.
- W3023967513 cites W2258038025 @default.
- W3023967513 cites W2315882566 @default.
- W3023967513 cites W2324836681 @default.
- W3023967513 cites W2962878684 @default.
- W3023967513 cites W2963046397 @default.
- W3023967513 cites W2963377907 @default.
- W3023967513 cites W2963537889 @default.
- W3023967513 cites W2963564816 @default.
- W3023967513 cites W2964084572 @default.
- W3023967513 cites W2964088725 @default.
- W3023967513 cites W2964172194 @default.
- W3023967513 cites W3045058260 @default.
- W3023967513 cites W3099055239 @default.
- W3023967513 cites W3101350474 @default.
- W3023967513 cites W3102287156 @default.
- W3023967513 cites W3102351557 @default.
- W3023967513 cites W3105839337 @default.
- W3023967513 cites W4239904006 @default.
- W3023967513 cites W4247695726 @default.
- W3023967513 doi "https://doi.org/10.1007/s00222-020-00972-9" @default.
- W3023967513 hasPublicationYear "2020" @default.
- W3023967513 type Work @default.
- W3023967513 sameAs 3023967513 @default.
- W3023967513 citedByCount "9" @default.
- W3023967513 countsByYear W30239675132019 @default.
- W3023967513 countsByYear W30239675132020 @default.
- W3023967513 countsByYear W30239675132021 @default.
- W3023967513 countsByYear W30239675132023 @default.
- W3023967513 crossrefType "journal-article" @default.
- W3023967513 hasAuthorship W3023967513A5015968105 @default.
- W3023967513 hasAuthorship W3023967513A5024172053 @default.
- W3023967513 hasBestOaLocation W30239675131 @default.
- W3023967513 hasConcept C11413529 @default.
- W3023967513 hasConcept C154945302 @default.
- W3023967513 hasConcept C41008148 @default.
- W3023967513 hasConceptScore W3023967513C11413529 @default.
- W3023967513 hasConceptScore W3023967513C154945302 @default.
- W3023967513 hasConceptScore W3023967513C41008148 @default.
- W3023967513 hasFunder F4320320322 @default.
- W3023967513 hasIssue "2" @default.
- W3023967513 hasLocation W30239675131 @default.
- W3023967513 hasLocation W30239675132 @default.
- W3023967513 hasLocation W30239675133 @default.
- W3023967513 hasOpenAccess W3023967513 @default.
- W3023967513 hasPrimaryLocation W30239675131 @default.
- W3023967513 hasRelatedWork W2051487156 @default.
- W3023967513 hasRelatedWork W2052122378 @default.
- W3023967513 hasRelatedWork W2053286651 @default.
- W3023967513 hasRelatedWork W2073681303 @default.
- W3023967513 hasRelatedWork W2317200988 @default.
- W3023967513 hasRelatedWork W2544423928 @default.
- W3023967513 hasRelatedWork W2947381795 @default.
- W3023967513 hasRelatedWork W2181413294 @default.
- W3023967513 hasRelatedWork W2181743346 @default.
- W3023967513 hasRelatedWork W2187401768 @default.
- W3023967513 hasVolume "222" @default.
- W3023967513 isParatext "false" @default.
- W3023967513 isRetracted "false" @default.
- W3023967513 magId "3023967513" @default.
- W3023967513 workType "article" @default.