Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023969710> ?p ?o ?g. }
- W3023969710 endingPage "2244" @default.
- W3023969710 startingPage "2244" @default.
- W3023969710 abstract "Energy consumption forecasting is of prime importance for the restructured environment of energy management in the electricity market. Accurate energy consumption forecasting is essential for efficient energy management in the smart grid (SG); however, the energy consumption pattern is non-linear with a high level of uncertainty and volatility. Forecasting such complex patterns requires accurate and fast forecasting models. In this paper, a novel hybrid electrical energy consumption forecasting model is proposed based on a deep learning model known as factored conditional restricted Boltzmann machine (FCRBM). The deep learning-based FCRBM model uses a rectified linear unit (ReLU) activation function and a multivariate autoregressive technique for the network training. The proposed model predicts future electrical energy consumption for efficient energy management in the SG. The proposed model is a novel hybrid model comprising four modules: (i) data processing and features selection module, (ii) deep learning-based FCRBM forecasting module, (iii) genetic wind driven optimization (GWDO) algorithm-based optimization module, and (iv) utilization module. The proposed hybrid model, called FS-FCRBM-GWDO, is tested and evaluated on real power grid data of USA in terms of four performance metrics: mean absolute percentage deviation (MAPD), variance, correlation coefficient, and convergence rate. Simulation results validate that the proposed hybrid FS-FCRBM-GWDO model has superior performance than existing models such as accurate fast converging short-term load forecasting (AFC-STLF) model, mutual information-modified enhanced differential evolution algorithm-artificial neural network (MI-mEDE-ANN)-based model, features selection-ANN (FS-ANN)-based model, and Bi-level model, in terms of forecast accuracy and convergence rate." @default.
- W3023969710 created "2020-05-13" @default.
- W3023969710 creator A5003359351 @default.
- W3023969710 creator A5018881921 @default.
- W3023969710 creator A5032049626 @default.
- W3023969710 creator A5035426024 @default.
- W3023969710 creator A5040312401 @default.
- W3023969710 creator A5046325653 @default.
- W3023969710 creator A5081909889 @default.
- W3023969710 creator A5090004280 @default.
- W3023969710 date "2020-05-03" @default.
- W3023969710 modified "2023-10-17" @default.
- W3023969710 title "A Novel Accurate and Fast Converging Deep Learning-Based Model for Electrical Energy Consumption Forecasting in a Smart Grid" @default.
- W3023969710 cites W1973909729 @default.
- W3023969710 cites W1975455363 @default.
- W3023969710 cites W1980067289 @default.
- W3023969710 cites W1982147649 @default.
- W3023969710 cites W1985815014 @default.
- W3023969710 cites W2001165499 @default.
- W3023969710 cites W2005747371 @default.
- W3023969710 cites W2005898567 @default.
- W3023969710 cites W2008406084 @default.
- W3023969710 cites W2017561014 @default.
- W3023969710 cites W2023645751 @default.
- W3023969710 cites W2026508613 @default.
- W3023969710 cites W2026854676 @default.
- W3023969710 cites W2035525938 @default.
- W3023969710 cites W2040367232 @default.
- W3023969710 cites W2051795269 @default.
- W3023969710 cites W2070291412 @default.
- W3023969710 cites W2094256195 @default.
- W3023969710 cites W2094626574 @default.
- W3023969710 cites W2105710559 @default.
- W3023969710 cites W2113890143 @default.
- W3023969710 cites W2116811583 @default.
- W3023969710 cites W2117665539 @default.
- W3023969710 cites W2154053567 @default.
- W3023969710 cites W2156483112 @default.
- W3023969710 cites W2166651278 @default.
- W3023969710 cites W2171375535 @default.
- W3023969710 cites W2267586429 @default.
- W3023969710 cites W2295959395 @default.
- W3023969710 cites W2342107842 @default.
- W3023969710 cites W2345122339 @default.
- W3023969710 cites W2510931397 @default.
- W3023969710 cites W2559879705 @default.
- W3023969710 cites W2591025119 @default.
- W3023969710 cites W2591426394 @default.
- W3023969710 cites W2601171548 @default.
- W3023969710 cites W2614198276 @default.
- W3023969710 cites W2736391747 @default.
- W3023969710 cites W2763926615 @default.
- W3023969710 cites W2764791077 @default.
- W3023969710 cites W2883971393 @default.
- W3023969710 cites W2890778288 @default.
- W3023969710 cites W2907286062 @default.
- W3023969710 cites W2965068690 @default.
- W3023969710 cites W3015607250 @default.
- W3023969710 cites W3018788689 @default.
- W3023969710 cites W3027972301 @default.
- W3023969710 cites W4236876307 @default.
- W3023969710 cites W4243106509 @default.
- W3023969710 doi "https://doi.org/10.3390/en13092244" @default.
- W3023969710 hasPublicationYear "2020" @default.
- W3023969710 type Work @default.
- W3023969710 sameAs 3023969710 @default.
- W3023969710 citedByCount "21" @default.
- W3023969710 countsByYear W30239697102020 @default.
- W3023969710 countsByYear W30239697102021 @default.
- W3023969710 countsByYear W30239697102022 @default.
- W3023969710 countsByYear W30239697102023 @default.
- W3023969710 crossrefType "journal-article" @default.
- W3023969710 hasAuthorship W3023969710A5003359351 @default.
- W3023969710 hasAuthorship W3023969710A5018881921 @default.
- W3023969710 hasAuthorship W3023969710A5032049626 @default.
- W3023969710 hasAuthorship W3023969710A5035426024 @default.
- W3023969710 hasAuthorship W3023969710A5040312401 @default.
- W3023969710 hasAuthorship W3023969710A5046325653 @default.
- W3023969710 hasAuthorship W3023969710A5081909889 @default.
- W3023969710 hasAuthorship W3023969710A5090004280 @default.
- W3023969710 hasBestOaLocation W30239697101 @default.
- W3023969710 hasConcept C10558101 @default.
- W3023969710 hasConcept C105795698 @default.
- W3023969710 hasConcept C108583219 @default.
- W3023969710 hasConcept C119599485 @default.
- W3023969710 hasConcept C119857082 @default.
- W3023969710 hasConcept C127413603 @default.
- W3023969710 hasConcept C149782125 @default.
- W3023969710 hasConcept C150217764 @default.
- W3023969710 hasConcept C151406439 @default.
- W3023969710 hasConcept C154945302 @default.
- W3023969710 hasConcept C159877910 @default.
- W3023969710 hasConcept C186370098 @default.
- W3023969710 hasConcept C24338571 @default.
- W3023969710 hasConcept C2780150128 @default.
- W3023969710 hasConcept C2780165032 @default.
- W3023969710 hasConcept C33923547 @default.
- W3023969710 hasConcept C41008148 @default.