Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023969881> ?p ?o ?g. }
- W3023969881 endingPage "4378" @default.
- W3023969881 startingPage "4372" @default.
- W3023969881 abstract "Determining the structural properties of condensed-phase systems is a fundamental problem in theoretical statistical mechanics. Here we present a machine learning method that is able to predict structural correlation functions with significantly improved accuracy in comparison with traditional approaches. The usefulness of this ex machina (from the machine) approach is illustrated by predicting the radial distribution functions of two paradigmatic condensed-phase systems, a Lennard-Jones fluid and a hard-sphere fluid, and then comparing those results to the results obtained using both integral equation methods and empirically motivated analytical functions. We find that application of the developed ex machina method typically decreases the predictive error by more than an order of magnitude in comparison with traditional theoretical methods." @default.
- W3023969881 created "2020-05-13" @default.
- W3023969881 creator A5003874504 @default.
- W3023969881 creator A5021344986 @default.
- W3023969881 creator A5040527467 @default.
- W3023969881 creator A5056150849 @default.
- W3023969881 date "2020-05-05" @default.
- W3023969881 modified "2023-10-18" @default.
- W3023969881 title "<i>Ex Machina</i> Determination of Structural Correlation Functions" @default.
- W3023969881 cites W1845618662 @default.
- W3023969881 cites W1892911143 @default.
- W3023969881 cites W1893512053 @default.
- W3023969881 cites W1909874130 @default.
- W3023969881 cites W1970973025 @default.
- W3023969881 cites W1972067177 @default.
- W3023969881 cites W1978215757 @default.
- W3023969881 cites W1986982278 @default.
- W3023969881 cites W1992470331 @default.
- W3023969881 cites W2003595435 @default.
- W3023969881 cites W2005783408 @default.
- W3023969881 cites W2008176168 @default.
- W3023969881 cites W2032849224 @default.
- W3023969881 cites W2042378583 @default.
- W3023969881 cites W2044311570 @default.
- W3023969881 cites W2046457392 @default.
- W3023969881 cites W2056129473 @default.
- W3023969881 cites W2056657832 @default.
- W3023969881 cites W2058549653 @default.
- W3023969881 cites W2059444269 @default.
- W3023969881 cites W2062251485 @default.
- W3023969881 cites W2065351060 @default.
- W3023969881 cites W2066005503 @default.
- W3023969881 cites W2066856600 @default.
- W3023969881 cites W2068009253 @default.
- W3023969881 cites W2071665629 @default.
- W3023969881 cites W2081597170 @default.
- W3023969881 cites W2093806300 @default.
- W3023969881 cites W2098242689 @default.
- W3023969881 cites W2126661453 @default.
- W3023969881 cites W2135038233 @default.
- W3023969881 cites W2140601348 @default.
- W3023969881 cites W2145347951 @default.
- W3023969881 cites W2147784945 @default.
- W3023969881 cites W2149934794 @default.
- W3023969881 cites W2154738055 @default.
- W3023969881 cites W2164256310 @default.
- W3023969881 cites W2168725496 @default.
- W3023969881 cites W2312973006 @default.
- W3023969881 cites W2320530525 @default.
- W3023969881 cites W2337082154 @default.
- W3023969881 cites W2346316931 @default.
- W3023969881 cites W2378074933 @default.
- W3023969881 cites W2419175238 @default.
- W3023969881 cites W2504619654 @default.
- W3023969881 cites W2541404351 @default.
- W3023969881 cites W2559394418 @default.
- W3023969881 cites W2582157661 @default.
- W3023969881 cites W2618570658 @default.
- W3023969881 cites W2760917849 @default.
- W3023969881 cites W2774998973 @default.
- W3023969881 cites W2792150628 @default.
- W3023969881 cites W2795405084 @default.
- W3023969881 cites W2884430236 @default.
- W3023969881 cites W2891277417 @default.
- W3023969881 cites W2912710844 @default.
- W3023969881 cites W2919725214 @default.
- W3023969881 cites W2987682252 @default.
- W3023969881 cites W3098521409 @default.
- W3023969881 cites W3099886861 @default.
- W3023969881 cites W3101643101 @default.
- W3023969881 cites W3104002162 @default.
- W3023969881 cites W79679915 @default.
- W3023969881 doi "https://doi.org/10.1021/acs.jpclett.0c00627" @default.
- W3023969881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32370504" @default.
- W3023969881 hasPublicationYear "2020" @default.
- W3023969881 type Work @default.
- W3023969881 sameAs 3023969881 @default.
- W3023969881 citedByCount "7" @default.
- W3023969881 countsByYear W30239698812020 @default.
- W3023969881 countsByYear W30239698812021 @default.
- W3023969881 countsByYear W30239698812023 @default.
- W3023969881 crossrefType "journal-article" @default.
- W3023969881 hasAuthorship W3023969881A5003874504 @default.
- W3023969881 hasAuthorship W3023969881A5021344986 @default.
- W3023969881 hasAuthorship W3023969881A5040527467 @default.
- W3023969881 hasAuthorship W3023969881A5056150849 @default.
- W3023969881 hasBestOaLocation W30239698812 @default.
- W3023969881 hasConcept C117220453 @default.
- W3023969881 hasConcept C121332964 @default.
- W3023969881 hasConcept C121864883 @default.
- W3023969881 hasConcept C2524010 @default.
- W3023969881 hasConcept C28826006 @default.
- W3023969881 hasConcept C33923547 @default.
- W3023969881 hasConcept C41008148 @default.
- W3023969881 hasConcept C44280652 @default.
- W3023969881 hasConcept C62520636 @default.
- W3023969881 hasConceptScore W3023969881C117220453 @default.
- W3023969881 hasConceptScore W3023969881C121332964 @default.