Matches in SemOpenAlex for { <https://semopenalex.org/work/W3023976802> ?p ?o ?g. }
- W3023976802 endingPage "102132" @default.
- W3023976802 startingPage "102132" @default.
- W3023976802 abstract "Non-destructive and accurate estimation of crop biomass is crucial for the quantitative diagnosis of growth status and timely prediction of grain yield. As an active remote sensing technique, terrestrial laser scanning (TLS) has become increasingly available in crop monitoring for its advantages in recording structural properties. Some researchers have attempted to use TLS data in the estimation of crop aboveground biomass, but only for part of the growing season. Previous studies rarely investigated the estimation of biomass for individual organs, such as the panicles in rice canopies, which led to the poor understanding of TLS technology in monitoring biomass partitioning among organs. The objective of this study was to investigate the potential of TLS in estimating the biomass for individual organs and aboveground biomass of rice and to examine the feasibility of developing universal models for the entire growing season. The field plots experiments were conducted in 2017 and 2018 and involved different nitrogen (N) rates, planting techniques and rice varieties. Three regression approaches, stepwise multiple linear regression (SMLR), random forest regression (RF) and linear mixed-effects (LME) modeling, were evaluated in estimating biomass with extensive TLS and biomass data collected at multiple phenological stages of rice growth across the entire season. The models were calibrated with the 2017 dataset and validated independently with the 2018 dataset. The results demonstrated that growth stage in LME modeling was selected as the most significant random effect on rice growth among the three candidates, which were rice variety, growth stage and planting technique. The LME models grouped by growth stage exhibited higher validation accuracies for all biomass variables over the entire season to varying degrees than SMLR models and RF models. The most pronounced improvement with a LME model was obtained for panicle biomass, with an increase of 0.74 in R2 (LME: R2 = 0.90, SMLR: R2 = 0.16) and a decrease of 1.15 t/ha in RMSE (LME: RMSE =0.79 t/ha, SMLR: RMSE =2.94 t/ha). Compared to SMLR and RF, LME modeling yielded similar estimation accuracies of aboveground biomass for pre-heading stages, but significantly higher accuracies for post-heading stages (LME: R2 = 0.63, RMSE =2.27 t/ha; SMLR: R2 = 0.42, RMSE =2.42 t/ha; RF: R2 = 0.57, RMSE =2.80 t/ha). These findings implied that SMLR was only suitable for the estimation of biomass at pre-heading stages and LME modeling performed remarkably well across all growth stages, especially for post-heading. The results suggest coupling TLS with LME modeling is a promising approach to monitoring rice biomass at post-heading stages at high accuracy and to overcoming the saturation of canopy reflectance signals encountered in optical remote sensing. It also has great potential in the monitoring of other crops in cloud-cover conditions and the instantaneous prediction of grain yield any time before harvest." @default.
- W3023976802 created "2020-05-13" @default.
- W3023976802 creator A5000071336 @default.
- W3023976802 creator A5001892611 @default.
- W3023976802 creator A5006852120 @default.
- W3023976802 creator A5014708668 @default.
- W3023976802 creator A5017022122 @default.
- W3023976802 creator A5021651601 @default.
- W3023976802 creator A5032533121 @default.
- W3023976802 creator A5065229969 @default.
- W3023976802 creator A5078044292 @default.
- W3023976802 creator A5080340959 @default.
- W3023976802 date "2020-09-01" @default.
- W3023976802 modified "2023-10-17" @default.
- W3023976802 title "Estimating aboveground and organ biomass of plant canopies across the entire season of rice growth with terrestrial laser scanning" @default.
- W3023976802 cites W1785325717 @default.
- W3023976802 cites W1900944452 @default.
- W3023976802 cites W1906130215 @default.
- W3023976802 cites W1940533278 @default.
- W3023976802 cites W1965106709 @default.
- W3023976802 cites W1966645910 @default.
- W3023976802 cites W1967135612 @default.
- W3023976802 cites W1978580796 @default.
- W3023976802 cites W1980375943 @default.
- W3023976802 cites W1984605183 @default.
- W3023976802 cites W2004248113 @default.
- W3023976802 cites W2006935340 @default.
- W3023976802 cites W2009931953 @default.
- W3023976802 cites W2016423844 @default.
- W3023976802 cites W2020175583 @default.
- W3023976802 cites W2024409320 @default.
- W3023976802 cites W2027563724 @default.
- W3023976802 cites W2029738218 @default.
- W3023976802 cites W2030450071 @default.
- W3023976802 cites W2032963712 @default.
- W3023976802 cites W2037021857 @default.
- W3023976802 cites W2045672262 @default.
- W3023976802 cites W2046918677 @default.
- W3023976802 cites W2069747286 @default.
- W3023976802 cites W2073679278 @default.
- W3023976802 cites W2074821737 @default.
- W3023976802 cites W2074977053 @default.
- W3023976802 cites W2076305962 @default.
- W3023976802 cites W2080088708 @default.
- W3023976802 cites W2089464686 @default.
- W3023976802 cites W2090166704 @default.
- W3023976802 cites W2093385295 @default.
- W3023976802 cites W2094322030 @default.
- W3023976802 cites W2097993678 @default.
- W3023976802 cites W2102695454 @default.
- W3023976802 cites W2114978787 @default.
- W3023976802 cites W2119582019 @default.
- W3023976802 cites W2123460937 @default.
- W3023976802 cites W2138408080 @default.
- W3023976802 cites W2138803696 @default.
- W3023976802 cites W2139925058 @default.
- W3023976802 cites W2152269371 @default.
- W3023976802 cites W2157395375 @default.
- W3023976802 cites W2181338717 @default.
- W3023976802 cites W2194170198 @default.
- W3023976802 cites W2466494297 @default.
- W3023976802 cites W2547228277 @default.
- W3023976802 cites W2556159429 @default.
- W3023976802 cites W2598497520 @default.
- W3023976802 cites W2739012777 @default.
- W3023976802 cites W2792434602 @default.
- W3023976802 cites W2792783324 @default.
- W3023976802 cites W2793935644 @default.
- W3023976802 cites W2969599765 @default.
- W3023976802 cites W3125307637 @default.
- W3023976802 cites W4235481510 @default.
- W3023976802 cites W643303129 @default.
- W3023976802 doi "https://doi.org/10.1016/j.jag.2020.102132" @default.
- W3023976802 hasPublicationYear "2020" @default.
- W3023976802 type Work @default.
- W3023976802 sameAs 3023976802 @default.
- W3023976802 citedByCount "22" @default.
- W3023976802 countsByYear W30239768022020 @default.
- W3023976802 countsByYear W30239768022021 @default.
- W3023976802 countsByYear W30239768022022 @default.
- W3023976802 countsByYear W30239768022023 @default.
- W3023976802 crossrefType "journal-article" @default.
- W3023976802 hasAuthorship W3023976802A5000071336 @default.
- W3023976802 hasAuthorship W3023976802A5001892611 @default.
- W3023976802 hasAuthorship W3023976802A5006852120 @default.
- W3023976802 hasAuthorship W3023976802A5014708668 @default.
- W3023976802 hasAuthorship W3023976802A5017022122 @default.
- W3023976802 hasAuthorship W3023976802A5021651601 @default.
- W3023976802 hasAuthorship W3023976802A5032533121 @default.
- W3023976802 hasAuthorship W3023976802A5065229969 @default.
- W3023976802 hasAuthorship W3023976802A5078044292 @default.
- W3023976802 hasAuthorship W3023976802A5080340959 @default.
- W3023976802 hasBestOaLocation W30239768021 @default.
- W3023976802 hasConcept C105795698 @default.
- W3023976802 hasConcept C115540264 @default.
- W3023976802 hasConcept C137580998 @default.
- W3023976802 hasConcept C137660486 @default.
- W3023976802 hasConcept C152877465 @default.