Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024041033> ?p ?o ?g. }
- W3024041033 endingPage "102256" @default.
- W3024041033 startingPage "102256" @default.
- W3024041033 abstract "Total brain white matter lesion (WML) volume is the most widely established magnetic resonance imaging (MRI) outcome measure in studies of multiple sclerosis (MS). To estimate WML volume, there are a number of automatic segmentation methods available, yet manual delineation remains the gold standard approach. Automatic approaches often yield a probability map to which a threshold is applied to create lesion segmentation masks. Unfortunately, few approaches systematically determine the threshold employed; many methods use a manually selected threshold, thus introducing human error and bias into the automated procedure. In this study, we propose and validate an automatic thresholding algorithm, Thresholding Approach for Probability Map Automatic Segmentation in Multiple Sclerosis (TAPAS), to obtain subject-specific threshold estimates for probability map automatic segmentation of T2-weighted (T2) hyperintense WMLs. Using multimodal MRI, the proposed method applies an automatic segmentation algorithm to obtain probability maps. We obtain the true subject-specific threshold that maximizes the Sørensen-Dice similarity coefficient (DSC). Then the subject-specific thresholds are modeled on a naive estimate of volume using a generalized additive model. Applying this model, we predict a subject-specific threshold in data not used for training. We ran a Monte Carlo-resampled split-sample cross-validation (100 validation sets) using two data sets: the first obtained from the Johns Hopkins Hospital (JHH) on a Philips 3 Tesla (3T) scanner (n = 94) and a second collected at the Brigham and Women's Hospital (BWH) using a Siemens 3T scanner (n = 40). By means of the proposed automated technique, in the JHH data we found an average reduction in subject-level absolute error of 0.1 mL per one mL increase in manual volume. Using Bland-Altman analysis, we found that volumetric bias associated with group-level thresholding was mitigated when applying TAPAS. The BWH data showed similar absolute error estimates using group-level thresholding or TAPAS likely since Bland-Altman analyses indicated no systematic biases associated with group or TAPAS volume estimates. The current study presents the first validated fully automated method for subject-specific threshold prediction to segment brain lesions." @default.
- W3024041033 created "2020-05-21" @default.
- W3024041033 creator A5005891853 @default.
- W3024041033 creator A5036912514 @default.
- W3024041033 creator A5037974362 @default.
- W3024041033 creator A5044579001 @default.
- W3024041033 creator A5055764402 @default.
- W3024041033 creator A5059550368 @default.
- W3024041033 creator A5061851273 @default.
- W3024041033 creator A5069892905 @default.
- W3024041033 creator A5075977363 @default.
- W3024041033 creator A5085527706 @default.
- W3024041033 creator A5087393296 @default.
- W3024041033 date "2020-01-01" @default.
- W3024041033 modified "2023-10-18" @default.
- W3024041033 title "TAPAS: A Thresholding Approach for Probability Map Automatic Segmentation in Multiple Sclerosis" @default.
- W3024041033 cites W1875751169 @default.
- W3024041033 cites W1973457617 @default.
- W3024041033 cites W1984505558 @default.
- W3024041033 cites W1990269401 @default.
- W3024041033 cites W2000278813 @default.
- W3024041033 cites W2000357300 @default.
- W3024041033 cites W2004691878 @default.
- W3024041033 cites W2009499611 @default.
- W3024041033 cites W2013013146 @default.
- W3024041033 cites W2013370381 @default.
- W3024041033 cites W2021204548 @default.
- W3024041033 cites W2029898151 @default.
- W3024041033 cites W2030905902 @default.
- W3024041033 cites W2036769788 @default.
- W3024041033 cites W2054346790 @default.
- W3024041033 cites W2075312775 @default.
- W3024041033 cites W2081370254 @default.
- W3024041033 cites W2096609500 @default.
- W3024041033 cites W2102848905 @default.
- W3024041033 cites W2110071287 @default.
- W3024041033 cites W2117340355 @default.
- W3024041033 cites W2132513126 @default.
- W3024041033 cites W2138575170 @default.
- W3024041033 cites W2140308441 @default.
- W3024041033 cites W2157848968 @default.
- W3024041033 cites W2163108348 @default.
- W3024041033 cites W2164167069 @default.
- W3024041033 cites W2164832046 @default.
- W3024041033 cites W2166219471 @default.
- W3024041033 cites W2322420799 @default.
- W3024041033 cites W2549949175 @default.
- W3024041033 cites W2604830170 @default.
- W3024041033 cites W2626192027 @default.
- W3024041033 cites W2777074421 @default.
- W3024041033 cites W2789235061 @default.
- W3024041033 cites W2790784974 @default.
- W3024041033 cites W2849179291 @default.
- W3024041033 cites W2895614609 @default.
- W3024041033 cites W2895883059 @default.
- W3024041033 cites W2911303517 @default.
- W3024041033 cites W2917694209 @default.
- W3024041033 cites W3122992882 @default.
- W3024041033 cites W4241890711 @default.
- W3024041033 doi "https://doi.org/10.1016/j.nicl.2020.102256" @default.
- W3024041033 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7236059" @default.
- W3024041033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32428847" @default.
- W3024041033 hasPublicationYear "2020" @default.
- W3024041033 type Work @default.
- W3024041033 sameAs 3024041033 @default.
- W3024041033 citedByCount "4" @default.
- W3024041033 countsByYear W30240410332020 @default.
- W3024041033 countsByYear W30240410332021 @default.
- W3024041033 crossrefType "journal-article" @default.
- W3024041033 hasAuthorship W3024041033A5005891853 @default.
- W3024041033 hasAuthorship W3024041033A5036912514 @default.
- W3024041033 hasAuthorship W3024041033A5037974362 @default.
- W3024041033 hasAuthorship W3024041033A5044579001 @default.
- W3024041033 hasAuthorship W3024041033A5055764402 @default.
- W3024041033 hasAuthorship W3024041033A5059550368 @default.
- W3024041033 hasAuthorship W3024041033A5061851273 @default.
- W3024041033 hasAuthorship W3024041033A5069892905 @default.
- W3024041033 hasAuthorship W3024041033A5075977363 @default.
- W3024041033 hasAuthorship W3024041033A5085527706 @default.
- W3024041033 hasAuthorship W3024041033A5087393296 @default.
- W3024041033 hasBestOaLocation W30240410331 @default.
- W3024041033 hasConcept C115961682 @default.
- W3024041033 hasConcept C119857082 @default.
- W3024041033 hasConcept C124504099 @default.
- W3024041033 hasConcept C153180895 @default.
- W3024041033 hasConcept C154945302 @default.
- W3024041033 hasConcept C191178318 @default.
- W3024041033 hasConcept C2776145597 @default.
- W3024041033 hasConcept C2779751349 @default.
- W3024041033 hasConcept C41008148 @default.
- W3024041033 hasConcept C89600930 @default.
- W3024041033 hasConceptScore W3024041033C115961682 @default.
- W3024041033 hasConceptScore W3024041033C119857082 @default.
- W3024041033 hasConceptScore W3024041033C124504099 @default.
- W3024041033 hasConceptScore W3024041033C153180895 @default.
- W3024041033 hasConceptScore W3024041033C154945302 @default.
- W3024041033 hasConceptScore W3024041033C191178318 @default.
- W3024041033 hasConceptScore W3024041033C2776145597 @default.