Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024153906> ?p ?o ?g. }
- W3024153906 endingPage "13927" @default.
- W3024153906 startingPage "13905" @default.
- W3024153906 abstract "Abstract. The methodology of analysing the biomass burning events recorded in the database of the European Aerosol Research Lidar Network in the framework of the Aerosol, Clouds and Trace Gases Research Infrastructure is presented. The period of 2008–2017 was chosen to analyse all of the events stored in the database under the Forest Fire category for a total of 14 stations available. The data provided ranged from complete datasets (particle backscatter, extinction and linear depolarization ratio profiles) to single profiles (particle backscatter coefficient profile). Smoke layers geometry was evaluated and the mean optical properties within each layer were computed. The back-trajectory technique was used to double-check the source of all pollution layers. The biomass burning layers were identified by taking into account the presence of the fires along the back trajectory. The biomass burning events are analysed by the means of the intensive parameters. The analysis was structured in three directions: (I) common biomass burning source (fire) recorded by at least two stations, (II) long-range transport from North America, and (III) analysis over four geographical regions (south-eastern Europe, north-eastern Europe, central Europe, and south-western Europe). Based on back-trajectory calculations and fire locations, the lidar measurements can be labelled either as measurements of a “single fire” or “mixed fires” (case I), measurements of North American fires, or measurements of mixed North American and local fires (case II). The histogram of the fire locations reveals the smoke sources for each region. For each region, statistics on intensive parameters are performed. The source origin of the intensive parameters is categorized based on the continental origin of the air mass (European, African, Asian, North American, or a combination of them). The methodology presented here is meant to provide a perspective to explore a large number of lidar data and deliver novel approaches to analyse the intensive parameters based on the assigned biomass burning sources. A thorough consideration of all potential fire sources reveals that most of the time the lidar measurements characterize the smoke from a mixture of fires. A comprehensive discussion of all the results (based on the intensive parameters and the source locations) will be given in a companion paper submitted to the ACP EARLINET special issue." @default.
- W3024153906 created "2020-05-21" @default.
- W3024153906 creator A5011336254 @default.
- W3024153906 creator A5055699105 @default.
- W3024153906 creator A5064808727 @default.
- W3024153906 creator A5080596362 @default.
- W3024153906 creator A5085254838 @default.
- W3024153906 date "2020-11-18" @default.
- W3024153906 modified "2023-10-06" @default.
- W3024153906 title "Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology" @default.
- W3024153906 cites W1485504984 @default.
- W3024153906 cites W1855303792 @default.
- W3024153906 cites W1879790698 @default.
- W3024153906 cites W1907369419 @default.
- W3024153906 cites W1920559165 @default.
- W3024153906 cites W1966617311 @default.
- W3024153906 cites W1983545043 @default.
- W3024153906 cites W1993602674 @default.
- W3024153906 cites W2010404318 @default.
- W3024153906 cites W2018369361 @default.
- W3024153906 cites W2023922370 @default.
- W3024153906 cites W2050210384 @default.
- W3024153906 cites W2065894393 @default.
- W3024153906 cites W2073703542 @default.
- W3024153906 cites W2074637003 @default.
- W3024153906 cites W2083258854 @default.
- W3024153906 cites W2095967171 @default.
- W3024153906 cites W2098397083 @default.
- W3024153906 cites W2116834769 @default.
- W3024153906 cites W2117075756 @default.
- W3024153906 cites W2123350263 @default.
- W3024153906 cites W2123969841 @default.
- W3024153906 cites W2129839048 @default.
- W3024153906 cites W2131538664 @default.
- W3024153906 cites W2138470679 @default.
- W3024153906 cites W2139743119 @default.
- W3024153906 cites W2156645902 @default.
- W3024153906 cites W2156674034 @default.
- W3024153906 cites W2157627825 @default.
- W3024153906 cites W2160282144 @default.
- W3024153906 cites W2163114065 @default.
- W3024153906 cites W2180392065 @default.
- W3024153906 cites W2193647305 @default.
- W3024153906 cites W2196517223 @default.
- W3024153906 cites W2207326340 @default.
- W3024153906 cites W2295931476 @default.
- W3024153906 cites W2297951680 @default.
- W3024153906 cites W2334588610 @default.
- W3024153906 cites W2511790667 @default.
- W3024153906 cites W2674884973 @default.
- W3024153906 cites W2754813548 @default.
- W3024153906 cites W2769115128 @default.
- W3024153906 cites W2781682963 @default.
- W3024153906 cites W2788215801 @default.
- W3024153906 cites W2792088059 @default.
- W3024153906 cites W2797699502 @default.
- W3024153906 cites W2807257426 @default.
- W3024153906 cites W2912696810 @default.
- W3024153906 cites W2924903695 @default.
- W3024153906 cites W2960620657 @default.
- W3024153906 cites W2969538161 @default.
- W3024153906 cites W2981781303 @default.
- W3024153906 cites W2985775983 @default.
- W3024153906 cites W3040895615 @default.
- W3024153906 cites W3045308653 @default.
- W3024153906 cites W4250225531 @default.
- W3024153906 doi "https://doi.org/10.5194/acp-20-13905-2020" @default.
- W3024153906 hasPublicationYear "2020" @default.
- W3024153906 type Work @default.
- W3024153906 sameAs 3024153906 @default.
- W3024153906 citedByCount "16" @default.
- W3024153906 countsByYear W30241539062021 @default.
- W3024153906 countsByYear W30241539062022 @default.
- W3024153906 countsByYear W30241539062023 @default.
- W3024153906 crossrefType "journal-article" @default.
- W3024153906 hasAuthorship W3024153906A5011336254 @default.
- W3024153906 hasAuthorship W3024153906A5055699105 @default.
- W3024153906 hasAuthorship W3024153906A5064808727 @default.
- W3024153906 hasAuthorship W3024153906A5080596362 @default.
- W3024153906 hasAuthorship W3024153906A5085254838 @default.
- W3024153906 hasBestOaLocation W30241539061 @default.
- W3024153906 hasConcept C101991246 @default.
- W3024153906 hasConcept C111368507 @default.
- W3024153906 hasConcept C115540264 @default.
- W3024153906 hasConcept C121332964 @default.
- W3024153906 hasConcept C127313418 @default.
- W3024153906 hasConcept C1276947 @default.
- W3024153906 hasConcept C13662910 @default.
- W3024153906 hasConcept C153294291 @default.
- W3024153906 hasConcept C159985019 @default.
- W3024153906 hasConcept C160529264 @default.
- W3024153906 hasConcept C192562407 @default.
- W3024153906 hasConcept C199289684 @default.
- W3024153906 hasConcept C204323151 @default.
- W3024153906 hasConcept C205649164 @default.
- W3024153906 hasConcept C2779345167 @default.
- W3024153906 hasConcept C3019268976 @default.
- W3024153906 hasConcept C30354325 @default.