Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024211197> ?p ?o ?g. }
- W3024211197 abstract "Abstract Background Estimating the genetic component of a complex phenotype is a complicated problem, mainly because there are many allele effects to estimate from a limited number of phenotypes. In spite of this difficulty, linear methods with variable selection have been able to give good predictions of additive effects of individuals. However, prediction of non-additive genetic effects is challenging with the usual prediction methods. In machine learning, non-additive relations between inputs can be modeled with neural networks. We developed a novel method (NetSparse) that uses Bayesian neural networks with variable selection for the prediction of genotypic values of individuals, including non-additive genetic effects. Results We simulated several populations with different phenotypic models and compared NetSparse to genomic best linear unbiased prediction (GBLUP), BayesB, their dominance variants, and an additive by additive method. We found that when the number of QTL was relatively small (10 or 100), NetSparse had 2 to 28 percentage points higher accuracy than the reference methods. For scenarios that included dominance or epistatic effects, NetSparse had 0.0 to 3.9 percentage points higher accuracy for predicting phenotypes than the reference methods, except in scenarios with extreme overdominance, for which reference methods that explicitly model dominance had 6 percentage points higher accuracy than NetSparse. Conclusions Bayesian neural networks with variable selection are promising for prediction of the genetic component of complex traits in animal breeding, and their performance is robust across different genetic models. However, their large computational costs can hinder their use in practice." @default.
- W3024211197 created "2020-05-21" @default.
- W3024211197 creator A5016745050 @default.
- W3024211197 creator A5029110279 @default.
- W3024211197 creator A5036106191 @default.
- W3024211197 creator A5039983345 @default.
- W3024211197 creator A5048140176 @default.
- W3024211197 creator A5050819882 @default.
- W3024211197 creator A5056879163 @default.
- W3024211197 date "2020-05-15" @default.
- W3024211197 modified "2023-10-01" @default.
- W3024211197 title "Bayesian neural networks with variable selection for prediction of genotypic values" @default.
- W3024211197 cites W1916564097 @default.
- W3024211197 cites W1928998639 @default.
- W3024211197 cites W1970149620 @default.
- W3024211197 cites W1981514681 @default.
- W3024211197 cites W1993490180 @default.
- W3024211197 cites W2000084758 @default.
- W3024211197 cites W2006026084 @default.
- W3024211197 cites W2020999234 @default.
- W3024211197 cites W2034846276 @default.
- W3024211197 cites W2035501897 @default.
- W3024211197 cites W2057278369 @default.
- W3024211197 cites W2059448777 @default.
- W3024211197 cites W2067715889 @default.
- W3024211197 cites W2072214908 @default.
- W3024211197 cites W2102087753 @default.
- W3024211197 cites W2114534683 @default.
- W3024211197 cites W2118980983 @default.
- W3024211197 cites W2121722219 @default.
- W3024211197 cites W2124196693 @default.
- W3024211197 cites W2154978106 @default.
- W3024211197 cites W2158376448 @default.
- W3024211197 cites W2217402295 @default.
- W3024211197 cites W2254979106 @default.
- W3024211197 cites W2268963460 @default.
- W3024211197 cites W2460144244 @default.
- W3024211197 cites W2576112957 @default.
- W3024211197 cites W2614655735 @default.
- W3024211197 cites W2789665961 @default.
- W3024211197 cites W2906471214 @default.
- W3024211197 doi "https://doi.org/10.1186/s12711-020-00544-8" @default.
- W3024211197 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7227313" @default.
- W3024211197 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32414320" @default.
- W3024211197 hasPublicationYear "2020" @default.
- W3024211197 type Work @default.
- W3024211197 sameAs 3024211197 @default.
- W3024211197 citedByCount "4" @default.
- W3024211197 countsByYear W30242111972021 @default.
- W3024211197 countsByYear W30242111972022 @default.
- W3024211197 countsByYear W30242111972023 @default.
- W3024211197 crossrefType "journal-article" @default.
- W3024211197 hasAuthorship W3024211197A5016745050 @default.
- W3024211197 hasAuthorship W3024211197A5029110279 @default.
- W3024211197 hasAuthorship W3024211197A5036106191 @default.
- W3024211197 hasAuthorship W3024211197A5039983345 @default.
- W3024211197 hasAuthorship W3024211197A5048140176 @default.
- W3024211197 hasAuthorship W3024211197A5050819882 @default.
- W3024211197 hasAuthorship W3024211197A5056879163 @default.
- W3024211197 hasBestOaLocation W30242111971 @default.
- W3024211197 hasConcept C103545067 @default.
- W3024211197 hasConcept C104317684 @default.
- W3024211197 hasConcept C105795698 @default.
- W3024211197 hasConcept C107673813 @default.
- W3024211197 hasConcept C119857082 @default.
- W3024211197 hasConcept C148483581 @default.
- W3024211197 hasConcept C154945302 @default.
- W3024211197 hasConcept C163175372 @default.
- W3024211197 hasConcept C180754005 @default.
- W3024211197 hasConcept C33923547 @default.
- W3024211197 hasConcept C37233692 @default.
- W3024211197 hasConcept C41008148 @default.
- W3024211197 hasConcept C50644808 @default.
- W3024211197 hasConcept C54355233 @default.
- W3024211197 hasConcept C61727976 @default.
- W3024211197 hasConcept C81917197 @default.
- W3024211197 hasConcept C81941488 @default.
- W3024211197 hasConcept C86803240 @default.
- W3024211197 hasConcept C9287583 @default.
- W3024211197 hasConceptScore W3024211197C103545067 @default.
- W3024211197 hasConceptScore W3024211197C104317684 @default.
- W3024211197 hasConceptScore W3024211197C105795698 @default.
- W3024211197 hasConceptScore W3024211197C107673813 @default.
- W3024211197 hasConceptScore W3024211197C119857082 @default.
- W3024211197 hasConceptScore W3024211197C148483581 @default.
- W3024211197 hasConceptScore W3024211197C154945302 @default.
- W3024211197 hasConceptScore W3024211197C163175372 @default.
- W3024211197 hasConceptScore W3024211197C180754005 @default.
- W3024211197 hasConceptScore W3024211197C33923547 @default.
- W3024211197 hasConceptScore W3024211197C37233692 @default.
- W3024211197 hasConceptScore W3024211197C41008148 @default.
- W3024211197 hasConceptScore W3024211197C50644808 @default.
- W3024211197 hasConceptScore W3024211197C54355233 @default.
- W3024211197 hasConceptScore W3024211197C61727976 @default.
- W3024211197 hasConceptScore W3024211197C81917197 @default.
- W3024211197 hasConceptScore W3024211197C81941488 @default.
- W3024211197 hasConceptScore W3024211197C86803240 @default.
- W3024211197 hasConceptScore W3024211197C9287583 @default.
- W3024211197 hasFunder F4320334893 @default.
- W3024211197 hasIssue "1" @default.