Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024234645> ?p ?o ?g. }
- W3024234645 abstract "Instance segmentation is one of the actively studied research topics in computer vision in which many objects of interest should be separated individually. While many feed-forward networks produce high-quality segmentation on different types of images, their results often suffer from topological errors (merging or splitting) for segmentation of many objects, requiring post-processing. Existing iterative methods, on the other hand, extract a single object at a time using discriminative knowledge-based properties (shapes, boundaries, etc.) without relying on post-processing, but they do not scale well. To exploit the advantages of conventional single-object-per-step segmentation methods without impairing the scalability, we propose a novel iterative deep reinforcement learning agent that learns how to differentiate multiple objects in parallel. Our reward function for the trainable agent is designed to favor grouping pixels belonging to the same object using a graph coloring algorithm. We demonstrate that the proposed method can efficiently perform instance segmentation of many objects without heavy post-processing." @default.
- W3024234645 created "2020-05-21" @default.
- W3024234645 creator A5006313891 @default.
- W3024234645 creator A5025485089 @default.
- W3024234645 creator A5025693168 @default.
- W3024234645 creator A5055052124 @default.
- W3024234645 date "2020-05-14" @default.
- W3024234645 modified "2023-09-27" @default.
- W3024234645 title "Reinforced Coloring for End-to-End Instance Segmentation" @default.
- W3024234645 cites W1901129140 @default.
- W3024234645 cites W1903029394 @default.
- W3024234645 cites W2050147836 @default.
- W3024234645 cites W2125637308 @default.
- W3024234645 cites W2145339207 @default.
- W3024234645 cites W2150066425 @default.
- W3024234645 cites W2173248099 @default.
- W3024234645 cites W2194775991 @default.
- W3024234645 cites W2221898772 @default.
- W3024234645 cites W2257979135 @default.
- W3024234645 cites W2264784471 @default.
- W3024234645 cites W2278786050 @default.
- W3024234645 cites W2341555367 @default.
- W3024234645 cites W2362143032 @default.
- W3024234645 cites W2468368736 @default.
- W3024234645 cites W2559597482 @default.
- W3024234645 cites W2582996697 @default.
- W3024234645 cites W260801291 @default.
- W3024234645 cites W2744404335 @default.
- W3024234645 cites W2775725209 @default.
- W3024234645 cites W2798122215 @default.
- W3024234645 cites W2799089472 @default.
- W3024234645 cites W2900130428 @default.
- W3024234645 cites W2962676885 @default.
- W3024234645 cites W2962851329 @default.
- W3024234645 cites W2963446712 @default.
- W3024234645 cites W2963659353 @default.
- W3024234645 cites W2963871073 @default.
- W3024234645 cites W2964043796 @default.
- W3024234645 cites W2964211168 @default.
- W3024234645 cites W3145128584 @default.
- W3024234645 cites W636712700 @default.
- W3024234645 doi "https://doi.org/10.48550/arxiv.2005.07058" @default.
- W3024234645 hasPublicationYear "2020" @default.
- W3024234645 type Work @default.
- W3024234645 sameAs 3024234645 @default.
- W3024234645 citedByCount "1" @default.
- W3024234645 countsByYear W30242346452021 @default.
- W3024234645 crossrefType "posted-content" @default.
- W3024234645 hasAuthorship W3024234645A5006313891 @default.
- W3024234645 hasAuthorship W3024234645A5025485089 @default.
- W3024234645 hasAuthorship W3024234645A5025693168 @default.
- W3024234645 hasAuthorship W3024234645A5055052124 @default.
- W3024234645 hasBestOaLocation W30242346451 @default.
- W3024234645 hasConcept C124504099 @default.
- W3024234645 hasConcept C125308379 @default.
- W3024234645 hasConcept C132525143 @default.
- W3024234645 hasConcept C144133560 @default.
- W3024234645 hasConcept C153180895 @default.
- W3024234645 hasConcept C154945302 @default.
- W3024234645 hasConcept C160633673 @default.
- W3024234645 hasConcept C162853370 @default.
- W3024234645 hasConcept C165696696 @default.
- W3024234645 hasConcept C25694479 @default.
- W3024234645 hasConcept C2781238097 @default.
- W3024234645 hasConcept C31972630 @default.
- W3024234645 hasConcept C38652104 @default.
- W3024234645 hasConcept C41008148 @default.
- W3024234645 hasConcept C48044578 @default.
- W3024234645 hasConcept C65885262 @default.
- W3024234645 hasConcept C77088390 @default.
- W3024234645 hasConcept C80444323 @default.
- W3024234645 hasConcept C89600930 @default.
- W3024234645 hasConcept C97541855 @default.
- W3024234645 hasConcept C97931131 @default.
- W3024234645 hasConceptScore W3024234645C124504099 @default.
- W3024234645 hasConceptScore W3024234645C125308379 @default.
- W3024234645 hasConceptScore W3024234645C132525143 @default.
- W3024234645 hasConceptScore W3024234645C144133560 @default.
- W3024234645 hasConceptScore W3024234645C153180895 @default.
- W3024234645 hasConceptScore W3024234645C154945302 @default.
- W3024234645 hasConceptScore W3024234645C160633673 @default.
- W3024234645 hasConceptScore W3024234645C162853370 @default.
- W3024234645 hasConceptScore W3024234645C165696696 @default.
- W3024234645 hasConceptScore W3024234645C25694479 @default.
- W3024234645 hasConceptScore W3024234645C2781238097 @default.
- W3024234645 hasConceptScore W3024234645C31972630 @default.
- W3024234645 hasConceptScore W3024234645C38652104 @default.
- W3024234645 hasConceptScore W3024234645C41008148 @default.
- W3024234645 hasConceptScore W3024234645C48044578 @default.
- W3024234645 hasConceptScore W3024234645C65885262 @default.
- W3024234645 hasConceptScore W3024234645C77088390 @default.
- W3024234645 hasConceptScore W3024234645C80444323 @default.
- W3024234645 hasConceptScore W3024234645C89600930 @default.
- W3024234645 hasConceptScore W3024234645C97541855 @default.
- W3024234645 hasConceptScore W3024234645C97931131 @default.
- W3024234645 hasLocation W30242346451 @default.
- W3024234645 hasOpenAccess W3024234645 @default.
- W3024234645 hasPrimaryLocation W30242346451 @default.
- W3024234645 hasRelatedWork W1507266234 @default.
- W3024234645 hasRelatedWork W1631910785 @default.