Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024257551> ?p ?o ?g. }
- W3024257551 endingPage "37" @default.
- W3024257551 startingPage "37" @default.
- W3024257551 abstract "Missing data imputation has been a hot topic in the past decade, and many state-of-the-art works have been presented to propose novel, interesting solutions that have been applied in a variety of fields. In the past decade, the successful results achieved by deep learning techniques have opened the way to their application for solving difficult problems where human skill is not able to provide a reliable solution. Not surprisingly, some deep learners, mainly exploiting encoder-decoder architectures, have also been designed and applied to the task of missing data imputation. However, most of the proposed imputation techniques have not been designed to tackle “complex data”, that is high dimensional data belonging to datasets with huge cardinality and describing complex problems. Precisely, they often need critical parameters to be manually set or exploit complex architecture and/or training phases that make their computational load impracticable. In this paper, after clustering the state-of-the-art imputation techniques into three broad categories, we briefly review the most representative methods and then describe our data imputation proposals, which exploit deep learning techniques specifically designed to handle complex data. Comparative tests on genome sequences show that our deep learning imputers outperform the state-of-the-art KNN-imputation method when filling gaps in human genome sequences." @default.
- W3024257551 created "2020-05-21" @default.
- W3024257551 creator A5034969250 @default.
- W3024257551 creator A5056607122 @default.
- W3024257551 creator A5063408697 @default.
- W3024257551 creator A5068911062 @default.
- W3024257551 creator A5071444502 @default.
- W3024257551 creator A5079939753 @default.
- W3024257551 date "2020-05-11" @default.
- W3024257551 modified "2023-10-06" @default.
- W3024257551 title "Complex Data Imputation by Auto-Encoders and Convolutional Neural Networks—A Case Study on Genome Gap-Filling" @default.
- W3024257551 cites W1966327575 @default.
- W3024257551 cites W1966701961 @default.
- W3024257551 cites W1982182078 @default.
- W3024257551 cites W1982302025 @default.
- W3024257551 cites W1982384746 @default.
- W3024257551 cites W1985690171 @default.
- W3024257551 cites W1995112866 @default.
- W3024257551 cites W2000038887 @default.
- W3024257551 cites W2013022059 @default.
- W3024257551 cites W2015437563 @default.
- W3024257551 cites W2040323067 @default.
- W3024257551 cites W2045427344 @default.
- W3024257551 cites W2055096789 @default.
- W3024257551 cites W2063291419 @default.
- W3024257551 cites W2064186732 @default.
- W3024257551 cites W2068358331 @default.
- W3024257551 cites W2089468765 @default.
- W3024257551 cites W2096863518 @default.
- W3024257551 cites W2101674911 @default.
- W3024257551 cites W2102720558 @default.
- W3024257551 cites W2106824466 @default.
- W3024257551 cites W2115098571 @default.
- W3024257551 cites W2115837368 @default.
- W3024257551 cites W2117327695 @default.
- W3024257551 cites W2134629862 @default.
- W3024257551 cites W2136714708 @default.
- W3024257551 cites W2136848157 @default.
- W3024257551 cites W2139625147 @default.
- W3024257551 cites W2143329262 @default.
- W3024257551 cites W2144328998 @default.
- W3024257551 cites W2146332392 @default.
- W3024257551 cites W2156825906 @default.
- W3024257551 cites W2168909179 @default.
- W3024257551 cites W2171118759 @default.
- W3024257551 cites W2215765065 @default.
- W3024257551 cites W2259632819 @default.
- W3024257551 cites W2264017649 @default.
- W3024257551 cites W2343416635 @default.
- W3024257551 cites W2345512687 @default.
- W3024257551 cites W2433743436 @default.
- W3024257551 cites W2592929672 @default.
- W3024257551 cites W2741564801 @default.
- W3024257551 cites W2763603897 @default.
- W3024257551 cites W2784123366 @default.
- W3024257551 cites W2800853489 @default.
- W3024257551 cites W2803116354 @default.
- W3024257551 cites W2897020959 @default.
- W3024257551 cites W2897644089 @default.
- W3024257551 cites W2899300491 @default.
- W3024257551 cites W2935703330 @default.
- W3024257551 cites W2958786037 @default.
- W3024257551 cites W2988359971 @default.
- W3024257551 cites W2988916019 @default.
- W3024257551 cites W3004825562 @default.
- W3024257551 cites W3104577407 @default.
- W3024257551 cites W4230559279 @default.
- W3024257551 cites W4232332215 @default.
- W3024257551 cites W4288083766 @default.
- W3024257551 cites W4361755798 @default.
- W3024257551 doi "https://doi.org/10.3390/computers9020037" @default.
- W3024257551 hasPublicationYear "2020" @default.
- W3024257551 type Work @default.
- W3024257551 sameAs 3024257551 @default.
- W3024257551 citedByCount "8" @default.
- W3024257551 countsByYear W30242575512020 @default.
- W3024257551 countsByYear W30242575512021 @default.
- W3024257551 countsByYear W30242575512022 @default.
- W3024257551 countsByYear W30242575512023 @default.
- W3024257551 crossrefType "journal-article" @default.
- W3024257551 hasAuthorship W3024257551A5034969250 @default.
- W3024257551 hasAuthorship W3024257551A5056607122 @default.
- W3024257551 hasAuthorship W3024257551A5063408697 @default.
- W3024257551 hasAuthorship W3024257551A5068911062 @default.
- W3024257551 hasAuthorship W3024257551A5071444502 @default.
- W3024257551 hasAuthorship W3024257551A5079939753 @default.
- W3024257551 hasBestOaLocation W30242575511 @default.
- W3024257551 hasConcept C108583219 @default.
- W3024257551 hasConcept C119857082 @default.
- W3024257551 hasConcept C124101348 @default.
- W3024257551 hasConcept C154945302 @default.
- W3024257551 hasConcept C165696696 @default.
- W3024257551 hasConcept C38652104 @default.
- W3024257551 hasConcept C41008148 @default.
- W3024257551 hasConcept C58041806 @default.
- W3024257551 hasConcept C73555534 @default.
- W3024257551 hasConcept C81363708 @default.
- W3024257551 hasConcept C9357733 @default.