Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024360037> ?p ?o ?g. }
- W3024360037 endingPage "90086" @default.
- W3024360037 startingPage "90069" @default.
- W3024360037 abstract "The most important motivation for streamflow forecasts is flood prediction and longtime continuous prediction in hydrological research. As for many traditional statistical models, forecasting flood peak discharge is nearly impossible. They can only get acceptable results in normal year. On the other hand, the numerical methods including physics mechanisms and rainfall-atmospherics could provide a better performance when floods coming, but the minima prediction period of them is about one month ahead, which is too short to be used in hydrological application. In this study, a deep neural network was employed to predict the streamflow of the Hankou Hydrological Station on the Yangtze River. This method combined the Empirical Mode Decomposition (EMD) algorithm and Encoder Decoder Long Short-Term Memory (En-De-LSTM) architecture. Owing to the hydrological series prediction problem usually contains several different frequency components, which will affect the precision of the longtime prediction. The EMD technique could read and decomposes the original data into several different frequency components. It will help the model to make longtime predictions more efficiently. The LSTM based En-De-LSTM neural network could make the forecasting closer to the observed in peak flow value through reading, training, remembering the valuable information and forgetting the useless data. Monthly streamflow data (from January 1952 to December 2008) from Hankou Hydrological Station on the Yangtze River was selected to train the model, and predictions were made in two years with catastrophic flood events and ten years rolling forecast. Furthermore, the Root Mean Square Error (RMSE), Coefficient of Determination (R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> ), Willmott's Index of agreement (WI) and the Legates-McCabe's Index (LMI) were used to evaluate the goodness-of-fit and performance of this model. The results showed the reliability of this method in catastrophic flood years and longtime continuous rolling forecasting." @default.
- W3024360037 created "2020-05-21" @default.
- W3024360037 creator A5022526666 @default.
- W3024360037 creator A5024921706 @default.
- W3024360037 creator A5028476727 @default.
- W3024360037 creator A5029066122 @default.
- W3024360037 date "2020-01-01" @default.
- W3024360037 modified "2023-10-16" @default.
- W3024360037 title "Streamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze River" @default.
- W3024360037 cites W1175502716 @default.
- W3024360037 cites W1516649732 @default.
- W3024360037 cites W1887520211 @default.
- W3024360037 cites W1972082561 @default.
- W3024360037 cites W1980255537 @default.
- W3024360037 cites W1987557628 @default.
- W3024360037 cites W2027568282 @default.
- W3024360037 cites W2028003655 @default.
- W3024360037 cites W2029888179 @default.
- W3024360037 cites W2033904036 @default.
- W3024360037 cites W2037460094 @default.
- W3024360037 cites W2043945250 @default.
- W3024360037 cites W2044781495 @default.
- W3024360037 cites W2049413683 @default.
- W3024360037 cites W2051005757 @default.
- W3024360037 cites W2064675550 @default.
- W3024360037 cites W2069143585 @default.
- W3024360037 cites W2102148524 @default.
- W3024360037 cites W2106665847 @default.
- W3024360037 cites W2123513648 @default.
- W3024360037 cites W2157331557 @default.
- W3024360037 cites W2163847932 @default.
- W3024360037 cites W2169886917 @default.
- W3024360037 cites W2171928131 @default.
- W3024360037 cites W2230911711 @default.
- W3024360037 cites W2256767201 @default.
- W3024360037 cites W2290873233 @default.
- W3024360037 cites W2312135541 @default.
- W3024360037 cites W2327501763 @default.
- W3024360037 cites W2552141949 @default.
- W3024360037 cites W2575842049 @default.
- W3024360037 cites W2743680082 @default.
- W3024360037 cites W2771169143 @default.
- W3024360037 cites W2790482354 @default.
- W3024360037 cites W2802436364 @default.
- W3024360037 cites W2890217676 @default.
- W3024360037 cites W2901469855 @default.
- W3024360037 cites W2905485021 @default.
- W3024360037 cites W2921907376 @default.
- W3024360037 cites W2922267326 @default.
- W3024360037 cites W2948700797 @default.
- W3024360037 cites W2965445060 @default.
- W3024360037 cites W2977216623 @default.
- W3024360037 cites W3004004790 @default.
- W3024360037 cites W3004343334 @default.
- W3024360037 cites W3007685425 @default.
- W3024360037 cites W3099487920 @default.
- W3024360037 cites W53688207 @default.
- W3024360037 doi "https://doi.org/10.1109/access.2020.2993874" @default.
- W3024360037 hasPublicationYear "2020" @default.
- W3024360037 type Work @default.
- W3024360037 sameAs 3024360037 @default.
- W3024360037 citedByCount "67" @default.
- W3024360037 countsByYear W30243600372020 @default.
- W3024360037 countsByYear W30243600372021 @default.
- W3024360037 countsByYear W30243600372022 @default.
- W3024360037 countsByYear W30243600372023 @default.
- W3024360037 crossrefType "journal-article" @default.
- W3024360037 hasAuthorship W3024360037A5022526666 @default.
- W3024360037 hasAuthorship W3024360037A5024921706 @default.
- W3024360037 hasAuthorship W3024360037A5028476727 @default.
- W3024360037 hasAuthorship W3024360037A5029066122 @default.
- W3024360037 hasBestOaLocation W30243600371 @default.
- W3024360037 hasConcept C105795698 @default.
- W3024360037 hasConcept C112633086 @default.
- W3024360037 hasConcept C126645576 @default.
- W3024360037 hasConcept C139945424 @default.
- W3024360037 hasConcept C147168706 @default.
- W3024360037 hasConcept C153294291 @default.
- W3024360037 hasConcept C154945302 @default.
- W3024360037 hasConcept C166957645 @default.
- W3024360037 hasConcept C183195422 @default.
- W3024360037 hasConcept C191935318 @default.
- W3024360037 hasConcept C205649164 @default.
- W3024360037 hasConcept C25570617 @default.
- W3024360037 hasConcept C3018003528 @default.
- W3024360037 hasConcept C33923547 @default.
- W3024360037 hasConcept C39432304 @default.
- W3024360037 hasConcept C41008148 @default.
- W3024360037 hasConcept C50644808 @default.
- W3024360037 hasConcept C53739315 @default.
- W3024360037 hasConcept C58640448 @default.
- W3024360037 hasConcept C74256435 @default.
- W3024360037 hasConcept C76155785 @default.
- W3024360037 hasConceptScore W3024360037C105795698 @default.
- W3024360037 hasConceptScore W3024360037C112633086 @default.
- W3024360037 hasConceptScore W3024360037C126645576 @default.
- W3024360037 hasConceptScore W3024360037C139945424 @default.
- W3024360037 hasConceptScore W3024360037C147168706 @default.