Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024406743> ?p ?o ?g. }
- W3024406743 endingPage "490" @default.
- W3024406743 startingPage "472" @default.
- W3024406743 abstract "Purpose Predicting the inactivity and the repeat transaction frequency of a firm's customer base is critical for customer relationship management. The literature offers two main approaches to such predictions: stochastic modeling efforts represented by Pareto/NBD and machine learning represented by neural network analysis. As these two approaches have been developed and applied in parallel, this study systematically compares the two approaches in their prediction accuracy and defines the relatively appropriate implementation scenarios of each model. Design/methodology/approach By designing a rolling exploration scheme with moving calibration/holdout combinations of customer data, this research explores the two approaches' relative performance by first utilizing three real world datasets and then a wide range of simulated datasets. Findings The empirical result indicates that neither approach is dominant and identifies patterns of relative applicability between the two. Such patterns are consistent across the empirical and the simulated datasets. Originality/value This study contributes to the literature by bridging two previously parallel analytical approaches applicable to customer base predictions. No prior research has rendered a comprehensive comparison on the two approaches' relative performance in customer base predictions as this study has done. The patterns identified in the two approaches' relative prediction performance provide practitioners with a clear-cut menu upon selecting approaches for customer base predictions. The findings further urge marketing scientists to reevaluate prior modeling efforts during the past half century by assessing what can be replaced by black boxes such as NNA and what cannot." @default.
- W3024406743 created "2020-05-21" @default.
- W3024406743 creator A5037902795 @default.
- W3024406743 creator A5048782628 @default.
- W3024406743 date "2020-05-12" @default.
- W3024406743 modified "2023-09-25" @default.
- W3024406743 title "Systematic comparisons of customer base prediction accuracy: Pareto/NBD versus neural network" @default.
- W3024406743 cites W1498436455 @default.
- W3024406743 cites W1612366852 @default.
- W3024406743 cites W1964270719 @default.
- W3024406743 cites W1989049108 @default.
- W3024406743 cites W2004353783 @default.
- W3024406743 cites W2029640264 @default.
- W3024406743 cites W2044861704 @default.
- W3024406743 cites W2045568966 @default.
- W3024406743 cites W2066060244 @default.
- W3024406743 cites W2074780813 @default.
- W3024406743 cites W2075211514 @default.
- W3024406743 cites W2077575809 @default.
- W3024406743 cites W2077823052 @default.
- W3024406743 cites W2084025544 @default.
- W3024406743 cites W2087340651 @default.
- W3024406743 cites W2088122893 @default.
- W3024406743 cites W2107581815 @default.
- W3024406743 cites W2130193710 @default.
- W3024406743 cites W2132314509 @default.
- W3024406743 cites W2136806966 @default.
- W3024406743 cites W2137888680 @default.
- W3024406743 cites W2142768258 @default.
- W3024406743 cites W2145278766 @default.
- W3024406743 cites W2147953360 @default.
- W3024406743 cites W2154172373 @default.
- W3024406743 cites W2156957852 @default.
- W3024406743 cites W2157289081 @default.
- W3024406743 cites W2161634631 @default.
- W3024406743 cites W2164346103 @default.
- W3024406743 cites W2183387232 @default.
- W3024406743 cites W2298982234 @default.
- W3024406743 cites W2346354117 @default.
- W3024406743 cites W2351600309 @default.
- W3024406743 cites W2493521008 @default.
- W3024406743 cites W2558749735 @default.
- W3024406743 cites W2612828053 @default.
- W3024406743 cites W2700559255 @default.
- W3024406743 cites W2727650337 @default.
- W3024406743 cites W2803015509 @default.
- W3024406743 cites W2910666191 @default.
- W3024406743 cites W2921357004 @default.
- W3024406743 cites W2934399013 @default.
- W3024406743 cites W2955379284 @default.
- W3024406743 cites W3103404646 @default.
- W3024406743 cites W3123668356 @default.
- W3024406743 cites W3123780380 @default.
- W3024406743 cites W4241045026 @default.
- W3024406743 doi "https://doi.org/10.1108/apjml-09-2019-0520" @default.
- W3024406743 hasPublicationYear "2020" @default.
- W3024406743 type Work @default.
- W3024406743 sameAs 3024406743 @default.
- W3024406743 citedByCount "2" @default.
- W3024406743 countsByYear W30244067432022 @default.
- W3024406743 crossrefType "journal-article" @default.
- W3024406743 hasAuthorship W3024406743A5037902795 @default.
- W3024406743 hasAuthorship W3024406743A5048782628 @default.
- W3024406743 hasConcept C105795698 @default.
- W3024406743 hasConcept C119857082 @default.
- W3024406743 hasConcept C120936955 @default.
- W3024406743 hasConcept C124101348 @default.
- W3024406743 hasConcept C127722929 @default.
- W3024406743 hasConcept C134306372 @default.
- W3024406743 hasConcept C137635306 @default.
- W3024406743 hasConcept C144133560 @default.
- W3024406743 hasConcept C154945302 @default.
- W3024406743 hasConcept C159985019 @default.
- W3024406743 hasConcept C162853370 @default.
- W3024406743 hasConcept C192562407 @default.
- W3024406743 hasConcept C204323151 @default.
- W3024406743 hasConcept C2777276756 @default.
- W3024406743 hasConcept C33923547 @default.
- W3024406743 hasConcept C41008148 @default.
- W3024406743 hasConcept C42058472 @default.
- W3024406743 hasConcept C50644808 @default.
- W3024406743 hasConcept C75949130 @default.
- W3024406743 hasConcept C77088390 @default.
- W3024406743 hasConceptScore W3024406743C105795698 @default.
- W3024406743 hasConceptScore W3024406743C119857082 @default.
- W3024406743 hasConceptScore W3024406743C120936955 @default.
- W3024406743 hasConceptScore W3024406743C124101348 @default.
- W3024406743 hasConceptScore W3024406743C127722929 @default.
- W3024406743 hasConceptScore W3024406743C134306372 @default.
- W3024406743 hasConceptScore W3024406743C137635306 @default.
- W3024406743 hasConceptScore W3024406743C144133560 @default.
- W3024406743 hasConceptScore W3024406743C154945302 @default.
- W3024406743 hasConceptScore W3024406743C159985019 @default.
- W3024406743 hasConceptScore W3024406743C162853370 @default.
- W3024406743 hasConceptScore W3024406743C192562407 @default.
- W3024406743 hasConceptScore W3024406743C204323151 @default.
- W3024406743 hasConceptScore W3024406743C2777276756 @default.
- W3024406743 hasConceptScore W3024406743C33923547 @default.