Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024408228> ?p ?o ?g. }
- W3024408228 endingPage "8300" @default.
- W3024408228 startingPage "8285" @default.
- W3024408228 abstract "In this article, we generate a regional mapping of space-borne carbon dioxide (CO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> ) concentration through a data fusion approach, including emission estimates and Land Use and Land Cover (LULC) information. NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite measures the column-averaged CO2 dry air mole fraction (XCO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> ) as contiguous parallelogram footprints. A major hindrance of this data set, specifically with its Level-2 observations, is missing footprints at certain time instants and the sparse sampling density in time. This article aims to generate Level-3 XCO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> maps on a regional scale for different locations worldwide through spatial interpolation of the OCO-2 retrievals. To deal with the sparse OCO-2 sampling, the cokriging-based spatial interpolation methods are suitable, which models auxiliary densely-sampled variables to predict the primary variable. In this article, a cokriging-based approach is applied using auxiliary emission data sets and the principles of the semantic kriging (SemK) method. Two global high-resolution emission data sets, the Open-source Data Inventory for Anthropogenic CO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> (ODIAC) and the Emissions Database for Global Atmospheric Research (EDGAR), are used here. The ontology-based semantic analysis of the SemK method quantifies the interrelationships of LULC classes for analyzing the local XCO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> pattern. Validations have been carried out in different regions worldwide, where the OCO-2 and the Total Carbon Column Observing Network (TCCON) measurements coexist. It is observed that the modeling of auxiliary emission data sets enhances the prediction accuracy of XCO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> . This article is one of the initial attempts to generate Level-3 XCO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> mapping of OCO-2 through a data fusion approach using emission data sets." @default.
- W3024408228 created "2020-05-21" @default.
- W3024408228 creator A5019016567 @default.
- W3024408228 creator A5086814847 @default.
- W3024408228 date "2020-12-01" @default.
- W3024408228 modified "2023-10-02" @default.
- W3024408228 title "Prediction of Satellite-Based Column CO<sub>2</sub> Concentration by Combining Emission Inventory and LULC Information" @default.
- W3024408228 cites W1522164011 @default.
- W3024408228 cites W1524392826 @default.
- W3024408228 cites W1540471798 @default.
- W3024408228 cites W1544837360 @default.
- W3024408228 cites W1886998865 @default.
- W3024408228 cites W1963897706 @default.
- W3024408228 cites W1985133040 @default.
- W3024408228 cites W1990960517 @default.
- W3024408228 cites W1992963382 @default.
- W3024408228 cites W1994405035 @default.
- W3024408228 cites W1995001525 @default.
- W3024408228 cites W2017773864 @default.
- W3024408228 cites W2023059429 @default.
- W3024408228 cites W2029214239 @default.
- W3024408228 cites W2047628888 @default.
- W3024408228 cites W2056366968 @default.
- W3024408228 cites W2057330883 @default.
- W3024408228 cites W2059794098 @default.
- W3024408228 cites W206108840 @default.
- W3024408228 cites W2071778288 @default.
- W3024408228 cites W2087662098 @default.
- W3024408228 cites W2089055951 @default.
- W3024408228 cites W2091529180 @default.
- W3024408228 cites W2126571464 @default.
- W3024408228 cites W2128217321 @default.
- W3024408228 cites W2130520941 @default.
- W3024408228 cites W2131665720 @default.
- W3024408228 cites W2143022286 @default.
- W3024408228 cites W2150509167 @default.
- W3024408228 cites W2151671485 @default.
- W3024408228 cites W2166165736 @default.
- W3024408228 cites W2196484614 @default.
- W3024408228 cites W2285532094 @default.
- W3024408228 cites W2313110083 @default.
- W3024408228 cites W2340599229 @default.
- W3024408228 cites W2466262867 @default.
- W3024408228 cites W2477068266 @default.
- W3024408228 cites W2507037612 @default.
- W3024408228 cites W2508427873 @default.
- W3024408228 cites W2547552060 @default.
- W3024408228 cites W2576177077 @default.
- W3024408228 cites W2578712893 @default.
- W3024408228 cites W2738521617 @default.
- W3024408228 cites W2738771715 @default.
- W3024408228 cites W2748203805 @default.
- W3024408228 cites W2749447601 @default.
- W3024408228 cites W2756223094 @default.
- W3024408228 cites W2786532903 @default.
- W3024408228 cites W2791226409 @default.
- W3024408228 cites W2796842028 @default.
- W3024408228 cites W2805504023 @default.
- W3024408228 cites W2885900881 @default.
- W3024408228 cites W2900766309 @default.
- W3024408228 cites W2901394353 @default.
- W3024408228 cites W2955252297 @default.
- W3024408228 cites W2974989378 @default.
- W3024408228 cites W4240608361 @default.
- W3024408228 doi "https://doi.org/10.1109/tgrs.2020.2985047" @default.
- W3024408228 hasPublicationYear "2020" @default.
- W3024408228 type Work @default.
- W3024408228 sameAs 3024408228 @default.
- W3024408228 citedByCount "23" @default.
- W3024408228 countsByYear W30244082282020 @default.
- W3024408228 countsByYear W30244082282021 @default.
- W3024408228 countsByYear W30244082282022 @default.
- W3024408228 countsByYear W30244082282023 @default.
- W3024408228 crossrefType "journal-article" @default.
- W3024408228 hasAuthorship W3024408228A5019016567 @default.
- W3024408228 hasAuthorship W3024408228A5086814847 @default.
- W3024408228 hasBestOaLocation W30244082282 @default.
- W3024408228 hasConcept C104114177 @default.
- W3024408228 hasConcept C106131492 @default.
- W3024408228 hasConcept C11413529 @default.
- W3024408228 hasConcept C119857082 @default.
- W3024408228 hasConcept C121332964 @default.
- W3024408228 hasConcept C1276947 @default.
- W3024408228 hasConcept C137800194 @default.
- W3024408228 hasConcept C140779682 @default.
- W3024408228 hasConcept C154945302 @default.
- W3024408228 hasConcept C19269812 @default.
- W3024408228 hasConcept C205649164 @default.
- W3024408228 hasConcept C31972630 @default.
- W3024408228 hasConcept C39432304 @default.
- W3024408228 hasConcept C41008148 @default.
- W3024408228 hasConcept C62649853 @default.
- W3024408228 hasConcept C81692654 @default.
- W3024408228 hasConceptScore W3024408228C104114177 @default.
- W3024408228 hasConceptScore W3024408228C106131492 @default.
- W3024408228 hasConceptScore W3024408228C11413529 @default.
- W3024408228 hasConceptScore W3024408228C119857082 @default.
- W3024408228 hasConceptScore W3024408228C121332964 @default.