Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024451261> ?p ?o ?g. }
- W3024451261 endingPage "A143" @default.
- W3024451261 startingPage "A143" @default.
- W3024451261 abstract "Context. Young stellar objects (YSOs) and their environments are generally geometrically and dynamically challenging to model, and the corresponding chemistry is often dominated by regions in non-thermal equilibrium. In addition, modern astrochemical models have to consider not only gas-phase reactions, but also solid-state reactions on icy dust grains. Solving the geometrical, physical, and chemical boundary conditions simultaneously requires a high computational effort and still runs the risk of false predictions due to the intrinsically non-linear effects that can occur. As a first step, solving problems of reduced complexity is helpful to guide more sophisticated approaches. Aims. The objective of this work is to test a model that uses shell-like structures (i.e., assuming a power-law number density and temperature gradient of the environment surrounding the YSO) to approximate the geometry and physical structure of YSOs, that in turn utilizes an advanced chemical model that includes gas-phase and solid-state reactions to model the chemical abundances of key species. A special focus is set on formaldehyde (H 2 CO) and methanol (CH 3 OH) as these molecules can be traced in the gas phase but are produced on icy dust grains. Furthermore, this kind of molecule is believed to be key to understanding the abundance of more complex species. We compare the influence of the geometry of the object on the molecular abundances with the effect induced by its chemistry. Methods. We set up a model that combines a grain-gas phase chemical model with a physical model of YSOs. The model ignores jets, shocks, and external radiation fields and concentrates on the physical conditions of spherically symmetric YSOs with a density and temperature gradient derived from available spectral energy distribution observations in the infrared. In addition, new observational data are presented using the APEX 12 m and the IRAM 30 m telescopes. Formaldehyde and methanol transitions have been searched for in three YSOs (R CrA-IRS 5A, C1333-IRAS 2A, and L1551-IRS 5) that can be categorized as Class 0 and Class 1 objects, and in the pre-stellar core L1544. The observed abundances of H 2 CO and CH 3 OH are compared with those calculated by the spherical physical-chemical model. Results. Compared to a standard “ ρ and T constant” model, i.e., a homogeneous (flat) density and temperature distribution, using number density and temperature gradients results in reduced abundances for the CO hydrogenation products formaldehyde and methanol. However, this geometric effect is generally not large, and depends on the source and on the molecular species under investigation. Although the current model uses simplified geometric assumptions the observed abundances of H 2 CO and CH 3 OH are well reproduced for the quiescent Class 1 object R CrA-IRS 5A. Our model tends to overestimate formaldehyde and methanol abundances for sources in early evolutionary stages, like the pre-stellar core L1544 or NGC 1333-IRS 2A (Class 0). Observational results on hydrogen peroxide and water that have also been predicted by our model are discussed elsewhere." @default.
- W3024451261 created "2020-05-21" @default.
- W3024451261 creator A5002915007 @default.
- W3024451261 creator A5005676984 @default.
- W3024451261 creator A5009751232 @default.
- W3024451261 creator A5010766589 @default.
- W3024451261 creator A5026703632 @default.
- W3024451261 creator A5027912059 @default.
- W3024451261 creator A5058295461 @default.
- W3024451261 creator A5081405709 @default.
- W3024451261 creator A5083465619 @default.
- W3024451261 date "2020-07-01" @default.
- W3024451261 modified "2023-10-17" @default.
- W3024451261 title "Simulating the circumstellar H2CO and CH3OH chemistry of young stellar objects using a spherical physical-chemical model" @default.
- W3024451261 cites W1613934360 @default.
- W3024451261 cites W1619634704 @default.
- W3024451261 cites W1970132780 @default.
- W3024451261 cites W1972568324 @default.
- W3024451261 cites W1978263165 @default.
- W3024451261 cites W1979618814 @default.
- W3024451261 cites W1985056453 @default.
- W3024451261 cites W1987619985 @default.
- W3024451261 cites W1990505626 @default.
- W3024451261 cites W1995136045 @default.
- W3024451261 cites W1996585546 @default.
- W3024451261 cites W1999754357 @default.
- W3024451261 cites W2000496902 @default.
- W3024451261 cites W2001638972 @default.
- W3024451261 cites W2010009427 @default.
- W3024451261 cites W2012189440 @default.
- W3024451261 cites W2021960159 @default.
- W3024451261 cites W2022370015 @default.
- W3024451261 cites W2024389974 @default.
- W3024451261 cites W2031523678 @default.
- W3024451261 cites W2033560689 @default.
- W3024451261 cites W2045172495 @default.
- W3024451261 cites W2046348680 @default.
- W3024451261 cites W2049239071 @default.
- W3024451261 cites W2050829508 @default.
- W3024451261 cites W2056860212 @default.
- W3024451261 cites W2059938599 @default.
- W3024451261 cites W2060582759 @default.
- W3024451261 cites W2077606423 @default.
- W3024451261 cites W2079412086 @default.
- W3024451261 cites W2079740281 @default.
- W3024451261 cites W2095820618 @default.
- W3024451261 cites W2100439661 @default.
- W3024451261 cites W2100737512 @default.
- W3024451261 cites W2104504085 @default.
- W3024451261 cites W2104741799 @default.
- W3024451261 cites W2105217969 @default.
- W3024451261 cites W2105443995 @default.
- W3024451261 cites W2120890566 @default.
- W3024451261 cites W2122041659 @default.
- W3024451261 cites W2141099472 @default.
- W3024451261 cites W2150900999 @default.
- W3024451261 cites W2156334946 @default.
- W3024451261 cites W2165964407 @default.
- W3024451261 cites W2168019345 @default.
- W3024451261 cites W2248377087 @default.
- W3024451261 cites W2295642117 @default.
- W3024451261 cites W2479140979 @default.
- W3024451261 cites W2528708914 @default.
- W3024451261 cites W2734825688 @default.
- W3024451261 cites W2789432229 @default.
- W3024451261 cites W2915092619 @default.
- W3024451261 cites W2951227252 @default.
- W3024451261 cites W3098162726 @default.
- W3024451261 cites W3098311220 @default.
- W3024451261 cites W3098348484 @default.
- W3024451261 cites W3099942453 @default.
- W3024451261 cites W3100512991 @default.
- W3024451261 cites W3100960734 @default.
- W3024451261 cites W3101042108 @default.
- W3024451261 cites W3101478111 @default.
- W3024451261 cites W3101527311 @default.
- W3024451261 cites W3102500414 @default.
- W3024451261 cites W3102734874 @default.
- W3024451261 cites W3102762515 @default.
- W3024451261 cites W3104225280 @default.
- W3024451261 cites W3104416305 @default.
- W3024451261 cites W3105683315 @default.
- W3024451261 cites W3106272285 @default.
- W3024451261 cites W3106445084 @default.
- W3024451261 cites W3124995313 @default.
- W3024451261 cites W4247735440 @default.
- W3024451261 cites W4292318878 @default.
- W3024451261 cites W4293187392 @default.
- W3024451261 cites W4295988666 @default.
- W3024451261 cites W4297746054 @default.
- W3024451261 cites W4297820697 @default.
- W3024451261 cites W4299856872 @default.
- W3024451261 doi "https://doi.org/10.1051/0004-6361/202037533" @default.
- W3024451261 hasPublicationYear "2020" @default.
- W3024451261 type Work @default.
- W3024451261 sameAs 3024451261 @default.
- W3024451261 citedByCount "2" @default.
- W3024451261 countsByYear W30244512612020 @default.