Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024457871> ?p ?o ?g. }
- W3024457871 endingPage "91739" @default.
- W3024457871 startingPage "91725" @default.
- W3024457871 abstract "Automatic hippocampal volume measurement from brain magnetic resonance imaging (MRI) is a crucial task and an important research area, especially in the study of neurodegenerative diseases; hippocampal volume atrophy is known to be connected with Alzheimer's disease. In this research work, we propose a deep learning-based method to automatically measure the discrete hippocampal volume without prior segmentation of the volumetric MRI scans. We constructed a 2-D convolutional neural network (CNN) model that uses 3-channel 2-D patches to predict the number of voxels attributed to the hippocampus; the number of estimated hippocampal voxels is multiplied by the voxel volume to measure the discrete volume of the hippocampus. In addition, we demonstrate a preprocessing scheme to prepare the data using a relatively small number of MRI scans. The average errors in the measured volumes of the proposed approach and the compared atlas-based system were 4.3173 ± 3.5436 (avg. error% ± STD) and 4.1562 ±3.5262 (avg. error % ± STD) for the left and right hippocampi, respectively. The correlation coefficients of the proposed approach with atlas-based volume measurement were statistically significant (p-value <; 0.01, R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> = 0.834 (left hippocampus), and R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> = 0.848 (right hippocampus) based on 0.05 significance level), which suggests that the proposed approach can be used as a proxy method for the atlas-based system. Furthermore, the proposed approach is computationally efficient and requires less than 2 seconds to calculate the number of voxels for an MRI scan. Moreover, our method outperforms the state-of-the-art deep learning approach, such as 2-D U-Net and SegNet in the context of voxel/volume estimation errors% for the left and right hippocampi." @default.
- W3024457871 created "2020-05-21" @default.
- W3024457871 creator A5008996356 @default.
- W3024457871 creator A5013293945 @default.
- W3024457871 creator A5026944704 @default.
- W3024457871 creator A5085609943 @default.
- W3024457871 date "2020-01-01" @default.
- W3024457871 modified "2023-10-03" @default.
- W3024457871 title "Automatic Localization and Discrete Volume Measurements of Hippocampi From MRI Data Using a Convolutional Neural Network" @default.
- W3024457871 cites W1656023708 @default.
- W3024457871 cites W1926518666 @default.
- W3024457871 cites W1979447612 @default.
- W3024457871 cites W1981789870 @default.
- W3024457871 cites W1982547105 @default.
- W3024457871 cites W2004293194 @default.
- W3024457871 cites W2010587020 @default.
- W3024457871 cites W2015795623 @default.
- W3024457871 cites W2024703724 @default.
- W3024457871 cites W2025945605 @default.
- W3024457871 cites W2031083838 @default.
- W3024457871 cites W2047446097 @default.
- W3024457871 cites W2056898461 @default.
- W3024457871 cites W2066470779 @default.
- W3024457871 cites W2084443965 @default.
- W3024457871 cites W2086978209 @default.
- W3024457871 cites W2089940272 @default.
- W3024457871 cites W2089954740 @default.
- W3024457871 cites W2104517703 @default.
- W3024457871 cites W2112796928 @default.
- W3024457871 cites W2116278521 @default.
- W3024457871 cites W2122632052 @default.
- W3024457871 cites W2125337786 @default.
- W3024457871 cites W2141908730 @default.
- W3024457871 cites W2143100862 @default.
- W3024457871 cites W2147146794 @default.
- W3024457871 cites W2161144725 @default.
- W3024457871 cites W2292862470 @default.
- W3024457871 cites W2487103609 @default.
- W3024457871 cites W2526511911 @default.
- W3024457871 cites W2567599812 @default.
- W3024457871 cites W2589647984 @default.
- W3024457871 cites W2768980250 @default.
- W3024457871 cites W2790260297 @default.
- W3024457871 cites W2805494981 @default.
- W3024457871 cites W2884232052 @default.
- W3024457871 cites W2893347629 @default.
- W3024457871 cites W2911363141 @default.
- W3024457871 cites W2919080049 @default.
- W3024457871 cites W2919115771 @default.
- W3024457871 cites W2922420945 @default.
- W3024457871 cites W2942882625 @default.
- W3024457871 cites W2945434083 @default.
- W3024457871 cites W2946843602 @default.
- W3024457871 cites W2947168485 @default.
- W3024457871 cites W2947498044 @default.
- W3024457871 cites W2950062006 @default.
- W3024457871 cites W2951152770 @default.
- W3024457871 cites W2953843471 @default.
- W3024457871 cites W2963881378 @default.
- W3024457871 cites W2965102627 @default.
- W3024457871 cites W2968596792 @default.
- W3024457871 cites W2981493641 @default.
- W3024457871 doi "https://doi.org/10.1109/access.2020.2994388" @default.
- W3024457871 hasPublicationYear "2020" @default.
- W3024457871 type Work @default.
- W3024457871 sameAs 3024457871 @default.
- W3024457871 citedByCount "11" @default.
- W3024457871 countsByYear W30244578712021 @default.
- W3024457871 countsByYear W30244578712022 @default.
- W3024457871 countsByYear W30244578712023 @default.
- W3024457871 crossrefType "journal-article" @default.
- W3024457871 hasAuthorship W3024457871A5008996356 @default.
- W3024457871 hasAuthorship W3024457871A5013293945 @default.
- W3024457871 hasAuthorship W3024457871A5026944704 @default.
- W3024457871 hasAuthorship W3024457871A5085609943 @default.
- W3024457871 hasBestOaLocation W30244578711 @default.
- W3024457871 hasConcept C121332964 @default.
- W3024457871 hasConcept C126838900 @default.
- W3024457871 hasConcept C143409427 @default.
- W3024457871 hasConcept C148762608 @default.
- W3024457871 hasConcept C153180895 @default.
- W3024457871 hasConcept C154945302 @default.
- W3024457871 hasConcept C15744967 @default.
- W3024457871 hasConcept C169760540 @default.
- W3024457871 hasConcept C20556612 @default.
- W3024457871 hasConcept C2781161787 @default.
- W3024457871 hasConcept C2989005 @default.
- W3024457871 hasConcept C34736171 @default.
- W3024457871 hasConcept C41008148 @default.
- W3024457871 hasConcept C54170458 @default.
- W3024457871 hasConcept C62520636 @default.
- W3024457871 hasConcept C71924100 @default.
- W3024457871 hasConcept C81363708 @default.
- W3024457871 hasConcept C89600930 @default.
- W3024457871 hasConceptScore W3024457871C121332964 @default.
- W3024457871 hasConceptScore W3024457871C126838900 @default.
- W3024457871 hasConceptScore W3024457871C143409427 @default.
- W3024457871 hasConceptScore W3024457871C148762608 @default.