Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024457890> ?p ?o ?g. }
- W3024457890 endingPage "3995" @default.
- W3024457890 startingPage "3995" @default.
- W3024457890 abstract "The United States is one of the largest per capita water withdrawers in the world, and certain parts of it, especially the western region, have long experienced water scarcity. Historically, the U.S. relied on large water infrastructure investments and planning to solve its water scarcity problems. These large-scale investments as well as water planning activities rely on water forecast studies conducted by water managing agencies. These forecasts, while key to the sustainable management of water, are usually done using historical growth extrapolation, conventional econometric approaches, or legacy software packages and often do not utilize methods common in the field of statistical learning. The objective of this study is to illustrate the extent to which forecast outcomes for commercial, institutional and industrial water use may be improved with a relatively simple adjustment to forecast model selection. To do so, we estimate over 352 thousand regression models with retailer level panel data from the largest utility in the U.S., featuring a rich set of variables to model commercial, institutional, and industrial water use in Southern California. Out-of-sample forecasting performances of those models that rank within the top 5% based on various in- and out-of-sample goodness-of-fit criteria were compared. We demonstrate that models with the best in-sample fit yeild, on average, larger forecast errors for out-of-sample forecast exercises and are subject to a significant degree of variation in forecasts. We find that out-of-sample forecast error and the variability in the forecast values can be reduced by an order of magnitude with a relatively straightforward change in the model selection criteria even when the forecast modelers do not have access to “big data” or utilize state-of-the-art machine learning techniques." @default.
- W3024457890 created "2020-05-21" @default.
- W3024457890 creator A5030912547 @default.
- W3024457890 creator A5058254393 @default.
- W3024457890 date "2020-05-13" @default.
- W3024457890 modified "2023-09-28" @default.
- W3024457890 title "Comparing Water Use Forecasting Model Selection Criteria: The Case of Commercial, Institutional, and Industrial Sector in Southern California" @default.
- W3024457890 cites W1494815688 @default.
- W3024457890 cites W1581237313 @default.
- W3024457890 cites W1767614367 @default.
- W3024457890 cites W1974853958 @default.
- W3024457890 cites W1992094459 @default.
- W3024457890 cites W2012074958 @default.
- W3024457890 cites W2012239432 @default.
- W3024457890 cites W2018513392 @default.
- W3024457890 cites W2061433215 @default.
- W3024457890 cites W2062981820 @default.
- W3024457890 cites W2066019793 @default.
- W3024457890 cites W2072106824 @default.
- W3024457890 cites W2084441767 @default.
- W3024457890 cites W2086019036 @default.
- W3024457890 cites W2091572543 @default.
- W3024457890 cites W2094365340 @default.
- W3024457890 cites W2112602938 @default.
- W3024457890 cites W2114614483 @default.
- W3024457890 cites W2120150738 @default.
- W3024457890 cites W2125334005 @default.
- W3024457890 cites W2133248570 @default.
- W3024457890 cites W2136895576 @default.
- W3024457890 cites W2142217492 @default.
- W3024457890 cites W2152323380 @default.
- W3024457890 cites W2169245074 @default.
- W3024457890 cites W2170327428 @default.
- W3024457890 cites W2285509159 @default.
- W3024457890 cites W2516375041 @default.
- W3024457890 cites W2518710384 @default.
- W3024457890 cites W2792180742 @default.
- W3024457890 cites W2792206226 @default.
- W3024457890 cites W2794407971 @default.
- W3024457890 cites W2974728350 @default.
- W3024457890 cites W2980263114 @default.
- W3024457890 cites W2990236959 @default.
- W3024457890 cites W4248426045 @default.
- W3024457890 doi "https://doi.org/10.3390/su12103995" @default.
- W3024457890 hasPublicationYear "2020" @default.
- W3024457890 type Work @default.
- W3024457890 sameAs 3024457890 @default.
- W3024457890 citedByCount "1" @default.
- W3024457890 countsByYear W30244578902023 @default.
- W3024457890 crossrefType "journal-article" @default.
- W3024457890 hasAuthorship W3024457890A5030912547 @default.
- W3024457890 hasAuthorship W3024457890A5058254393 @default.
- W3024457890 hasBestOaLocation W30244578901 @default.
- W3024457890 hasConcept C105795698 @default.
- W3024457890 hasConcept C109747225 @default.
- W3024457890 hasConcept C120954023 @default.
- W3024457890 hasConcept C127413603 @default.
- W3024457890 hasConcept C127598652 @default.
- W3024457890 hasConcept C132459708 @default.
- W3024457890 hasConcept C134560507 @default.
- W3024457890 hasConcept C144024400 @default.
- W3024457890 hasConcept C149207113 @default.
- W3024457890 hasConcept C149782125 @default.
- W3024457890 hasConcept C149923435 @default.
- W3024457890 hasConcept C153823671 @default.
- W3024457890 hasConcept C162324750 @default.
- W3024457890 hasConcept C175444787 @default.
- W3024457890 hasConcept C180075932 @default.
- W3024457890 hasConcept C185592680 @default.
- W3024457890 hasConcept C18903297 @default.
- W3024457890 hasConcept C198531522 @default.
- W3024457890 hasConcept C205649164 @default.
- W3024457890 hasConcept C2778755073 @default.
- W3024457890 hasConcept C2908647359 @default.
- W3024457890 hasConcept C33923547 @default.
- W3024457890 hasConcept C39432304 @default.
- W3024457890 hasConcept C41008148 @default.
- W3024457890 hasConcept C42475967 @default.
- W3024457890 hasConcept C43617362 @default.
- W3024457890 hasConcept C51193700 @default.
- W3024457890 hasConcept C58640448 @default.
- W3024457890 hasConcept C86803240 @default.
- W3024457890 hasConceptScore W3024457890C105795698 @default.
- W3024457890 hasConceptScore W3024457890C109747225 @default.
- W3024457890 hasConceptScore W3024457890C120954023 @default.
- W3024457890 hasConceptScore W3024457890C127413603 @default.
- W3024457890 hasConceptScore W3024457890C127598652 @default.
- W3024457890 hasConceptScore W3024457890C132459708 @default.
- W3024457890 hasConceptScore W3024457890C134560507 @default.
- W3024457890 hasConceptScore W3024457890C144024400 @default.
- W3024457890 hasConceptScore W3024457890C149207113 @default.
- W3024457890 hasConceptScore W3024457890C149782125 @default.
- W3024457890 hasConceptScore W3024457890C149923435 @default.
- W3024457890 hasConceptScore W3024457890C153823671 @default.
- W3024457890 hasConceptScore W3024457890C162324750 @default.
- W3024457890 hasConceptScore W3024457890C175444787 @default.
- W3024457890 hasConceptScore W3024457890C180075932 @default.
- W3024457890 hasConceptScore W3024457890C185592680 @default.