Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024459502> ?p ?o ?g. }
- W3024459502 endingPage "111" @default.
- W3024459502 startingPage "99" @default.
- W3024459502 abstract "This paper aims to present an experiment developed in order to produce a corpus with automated annotation, using pre-existing annotated corpus and machine learning classification methods. A search for pre-existing annotated corpora in Brazilian Portuguese was applied, founding six corpora of which one has been selected as the training dataset. A set of tweets was collected in a specific area of Recife (Pernambuco-Brazil) using some keywords related to kinds of crimes and reinforcing some places in that area. Preprocessing tasks were applied over the pre-existing corpus and the tweets’ set collected. Latent Dirichlet Allocation was applied for topic modeling followed by Multinomial Naïve Bayes, Linear Support Vector Machines, and Logistic Regression for the sentiment polarity classification. The results of the cross-validation of the experiment indicated Linear Support Vector Machines as the most accurate classification method among the three considering the specific training set used, and by this method, the new annotated corpus about the selected topic related to public security was created." @default.
- W3024459502 created "2020-05-21" @default.
- W3024459502 creator A5045447418 @default.
- W3024459502 creator A5089605727 @default.
- W3024459502 creator A5091340679 @default.
- W3024459502 date "2020-01-01" @default.
- W3024459502 modified "2023-10-15" @default.
- W3024459502 title "An Automated Corpus Annotation Experiment in Brazilian Portuguese for Sentiment Analysis in Public Security" @default.
- W3024459502 cites W1994757795 @default.
- W3024459502 cites W2001932471 @default.
- W3024459502 cites W2030990698 @default.
- W3024459502 cites W2057308560 @default.
- W3024459502 cites W2080672283 @default.
- W3024459502 cites W2147876157 @default.
- W3024459502 cites W2162366958 @default.
- W3024459502 cites W2215376118 @default.
- W3024459502 cites W2337981493 @default.
- W3024459502 cites W2342845725 @default.
- W3024459502 cites W2570423334 @default.
- W3024459502 cites W2594223173 @default.
- W3024459502 cites W2618584523 @default.
- W3024459502 cites W2752809326 @default.
- W3024459502 cites W2780195716 @default.
- W3024459502 cites W2786169785 @default.
- W3024459502 cites W2790404387 @default.
- W3024459502 cites W2793262733 @default.
- W3024459502 cites W2803936119 @default.
- W3024459502 cites W2807014386 @default.
- W3024459502 cites W2810581822 @default.
- W3024459502 cites W2915909857 @default.
- W3024459502 cites W2926473727 @default.
- W3024459502 cites W2945585140 @default.
- W3024459502 cites W2947147709 @default.
- W3024459502 cites W2951883999 @default.
- W3024459502 cites W2952214074 @default.
- W3024459502 cites W2958619243 @default.
- W3024459502 cites W2960449550 @default.
- W3024459502 cites W4205184193 @default.
- W3024459502 doi "https://doi.org/10.1007/978-3-030-46224-6_8" @default.
- W3024459502 hasPublicationYear "2020" @default.
- W3024459502 type Work @default.
- W3024459502 sameAs 3024459502 @default.
- W3024459502 citedByCount "5" @default.
- W3024459502 countsByYear W30244595022022 @default.
- W3024459502 countsByYear W30244595022023 @default.
- W3024459502 crossrefType "book-chapter" @default.
- W3024459502 hasAuthorship W3024459502A5045447418 @default.
- W3024459502 hasAuthorship W3024459502A5089605727 @default.
- W3024459502 hasAuthorship W3024459502A5091340679 @default.
- W3024459502 hasConcept C119857082 @default.
- W3024459502 hasConcept C12267149 @default.
- W3024459502 hasConcept C138885662 @default.
- W3024459502 hasConcept C154945302 @default.
- W3024459502 hasConcept C171686336 @default.
- W3024459502 hasConcept C177264268 @default.
- W3024459502 hasConcept C199360897 @default.
- W3024459502 hasConcept C204321447 @default.
- W3024459502 hasConcept C2474386 @default.
- W3024459502 hasConcept C2776321320 @default.
- W3024459502 hasConcept C2778880076 @default.
- W3024459502 hasConcept C34736171 @default.
- W3024459502 hasConcept C35219183 @default.
- W3024459502 hasConcept C41008148 @default.
- W3024459502 hasConcept C41895202 @default.
- W3024459502 hasConcept C500882744 @default.
- W3024459502 hasConcept C52001869 @default.
- W3024459502 hasConceptScore W3024459502C119857082 @default.
- W3024459502 hasConceptScore W3024459502C12267149 @default.
- W3024459502 hasConceptScore W3024459502C138885662 @default.
- W3024459502 hasConceptScore W3024459502C154945302 @default.
- W3024459502 hasConceptScore W3024459502C171686336 @default.
- W3024459502 hasConceptScore W3024459502C177264268 @default.
- W3024459502 hasConceptScore W3024459502C199360897 @default.
- W3024459502 hasConceptScore W3024459502C204321447 @default.
- W3024459502 hasConceptScore W3024459502C2474386 @default.
- W3024459502 hasConceptScore W3024459502C2776321320 @default.
- W3024459502 hasConceptScore W3024459502C2778880076 @default.
- W3024459502 hasConceptScore W3024459502C34736171 @default.
- W3024459502 hasConceptScore W3024459502C35219183 @default.
- W3024459502 hasConceptScore W3024459502C41008148 @default.
- W3024459502 hasConceptScore W3024459502C41895202 @default.
- W3024459502 hasConceptScore W3024459502C500882744 @default.
- W3024459502 hasConceptScore W3024459502C52001869 @default.
- W3024459502 hasLocation W30244595021 @default.
- W3024459502 hasOpenAccess W3024459502 @default.
- W3024459502 hasPrimaryLocation W30244595021 @default.
- W3024459502 hasRelatedWork W2207653751 @default.
- W3024459502 hasRelatedWork W2769501189 @default.
- W3024459502 hasRelatedWork W2888805565 @default.
- W3024459502 hasRelatedWork W2962686197 @default.
- W3024459502 hasRelatedWork W3005513013 @default.
- W3024459502 hasRelatedWork W4291700620 @default.
- W3024459502 hasRelatedWork W4312773271 @default.
- W3024459502 hasRelatedWork W4315588616 @default.
- W3024459502 hasRelatedWork W4317422773 @default.
- W3024459502 hasRelatedWork W2611137333 @default.
- W3024459502 isParatext "false" @default.
- W3024459502 isRetracted "false" @default.