Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024466667> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3024466667 endingPage "451" @default.
- W3024466667 startingPage "443" @default.
- W3024466667 abstract "We proposed a new deep learning model by analyzing electroencephalogram signals to reduce the complexity of feature extraction and improve the accuracy of recognition of fatigue status of pilots. For one thing, we applied wavelet packet transform to decompose electroencephalogram signals of pilots to extract the δ wave (0.4-3 Hz), θ wave (4-7 Hz), α wave (8-13 Hz) and β wave (14-30 Hz), and the combination of them was used as de-nosing electroencephalogram signals. For another, we proposed a deep contractive auto-encoding network-Softmax model for identifying pilots' fatigue status. Its recognition results were also compared with other models. The experimental results showed that the proposed deep learning model had a nice recognition, and the accuracy of recognition was up to 91.67%. Therefore, recognition of fatigue status of pilots based on deep contractive auto-encoding network is of great significance.针对飞行员疲劳状态识别的复杂性,本文基于脑电信号提出一种新的深度学习模型。一方面,利用小波包变换对飞行员脑电信号进行多尺度分解,提取了脑电信号的四个节律波段:δ 波(0.4~3 Hz)、θ 波(4~7 Hz)、α 波(8~13 Hz)和 β 波(14~30 Hz),将重组的波段信号作为纯净的脑电信号。另一方面,提出一种基于深度收缩自编码网络的飞行员疲劳状态识别模型,并与其他方法进行比较。实验结果显示,针对飞行员疲劳状态识别问题,所建立的新的深度学习模型具有很好的识别效果,识别准确率高达 91.67%。因此,研究基于深度收缩自编码网络的飞行员疲劳状态识别具有重要意义。." @default.
- W3024466667 created "2020-05-21" @default.
- W3024466667 creator A5002845990 @default.
- W3024466667 creator A5021187014 @default.
- W3024466667 creator A5050762543 @default.
- W3024466667 creator A5070551160 @default.
- W3024466667 creator A5075668011 @default.
- W3024466667 creator A5088781048 @default.
- W3024466667 date "2018-06-25" @default.
- W3024466667 modified "2023-10-16" @default.
- W3024466667 title "[Recognition of fatigue status of pilots based on deep contractive auto-encoding network]." @default.
- W3024466667 cites W1971681856 @default.
- W3024466667 cites W1987324686 @default.
- W3024466667 cites W2023133322 @default.
- W3024466667 cites W2537229885 @default.
- W3024466667 doi "https://doi.org/10.7507/1001-5515.201701018" @default.
- W3024466667 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29938954" @default.
- W3024466667 hasPublicationYear "2018" @default.
- W3024466667 type Work @default.
- W3024466667 sameAs 3024466667 @default.
- W3024466667 citedByCount "0" @default.
- W3024466667 crossrefType "journal-article" @default.
- W3024466667 hasAuthorship W3024466667A5002845990 @default.
- W3024466667 hasAuthorship W3024466667A5021187014 @default.
- W3024466667 hasAuthorship W3024466667A5050762543 @default.
- W3024466667 hasAuthorship W3024466667A5070551160 @default.
- W3024466667 hasAuthorship W3024466667A5075668011 @default.
- W3024466667 hasAuthorship W3024466667A5088781048 @default.
- W3024466667 hasConcept C108583219 @default.
- W3024466667 hasConcept C125411270 @default.
- W3024466667 hasConcept C138885662 @default.
- W3024466667 hasConcept C153180895 @default.
- W3024466667 hasConcept C154945302 @default.
- W3024466667 hasConcept C188441871 @default.
- W3024466667 hasConcept C2776401178 @default.
- W3024466667 hasConcept C28490314 @default.
- W3024466667 hasConcept C41008148 @default.
- W3024466667 hasConcept C41895202 @default.
- W3024466667 hasConcept C52622490 @default.
- W3024466667 hasConceptScore W3024466667C108583219 @default.
- W3024466667 hasConceptScore W3024466667C125411270 @default.
- W3024466667 hasConceptScore W3024466667C138885662 @default.
- W3024466667 hasConceptScore W3024466667C153180895 @default.
- W3024466667 hasConceptScore W3024466667C154945302 @default.
- W3024466667 hasConceptScore W3024466667C188441871 @default.
- W3024466667 hasConceptScore W3024466667C2776401178 @default.
- W3024466667 hasConceptScore W3024466667C28490314 @default.
- W3024466667 hasConceptScore W3024466667C41008148 @default.
- W3024466667 hasConceptScore W3024466667C41895202 @default.
- W3024466667 hasConceptScore W3024466667C52622490 @default.
- W3024466667 hasIssue "3" @default.
- W3024466667 hasLocation W30244666671 @default.
- W3024466667 hasOpenAccess W3024466667 @default.
- W3024466667 hasPrimaryLocation W30244666671 @default.
- W3024466667 hasRelatedWork W2016461833 @default.
- W3024466667 hasRelatedWork W2546942002 @default.
- W3024466667 hasRelatedWork W2733060750 @default.
- W3024466667 hasRelatedWork W2743258233 @default.
- W3024466667 hasRelatedWork W2771515600 @default.
- W3024466667 hasRelatedWork W2773120646 @default.
- W3024466667 hasRelatedWork W2807311372 @default.
- W3024466667 hasRelatedWork W2977314777 @default.
- W3024466667 hasRelatedWork W3156786002 @default.
- W3024466667 hasRelatedWork W4317987726 @default.
- W3024466667 hasVolume "35" @default.
- W3024466667 isParatext "false" @default.
- W3024466667 isRetracted "false" @default.
- W3024466667 magId "3024466667" @default.
- W3024466667 workType "article" @default.