Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024657687> ?p ?o ?g. }
- W3024657687 endingPage "1212" @default.
- W3024657687 startingPage "1212" @default.
- W3024657687 abstract "Single-beam acoustic tweezers (SBAT) is a widely used trapping technique to manipulate microscopic particles or cells. Recently, the characterization of a single cancer cell using high-frequency (>30 MHz) SBAT has been reported to determine its invasiveness and metastatic potential. Investigation of cell elasticity and invasiveness is based on the deformability of cells under SBAT's radiation forces, and in general, more physically deformed cells exhibit higher levels of invasiveness and therefore higher metastatic potential. However, previous imaging analysis to determine substantial differences in cell deformation, where the SBAT is turned ON or OFF, relies on the subjective observation that may vary and requires follow-up evaluations from experts. In this study, we propose an automatic and reliable cancer cell classification method based on SBAT and a convolutional neural network (CNN), which provides objective and accurate quantitative measurement results. We used a custom-designed 50 MHz SBAT transducer to obtain a series of images of deformed human breast cancer cells. CNN-based classification methods with data augmentation applied to collected images determined and validated the metastatic potential of cancer cells. As a result, with the selected optimizers, precision, and recall of the model were found to be greater than 0.95, which highly validates the classification performance of our integrated method. CNN-guided cancer cell deformation analysis using SBAT may be a promising alternative to current histological image analysis, and this pretrained model will significantly reduce the evaluation time for a larger population of cells." @default.
- W3024657687 created "2020-05-21" @default.
- W3024657687 creator A5028959139 @default.
- W3024657687 creator A5034681222 @default.
- W3024657687 creator A5069645890 @default.
- W3024657687 creator A5083062404 @default.
- W3024657687 date "2020-05-12" @default.
- W3024657687 modified "2023-10-16" @default.
- W3024657687 title "Classification of Breast Cancer Cells Using the Integration of High-Frequency Single-Beam Acoustic Tweezers and Convolutional Neural Networks" @default.
- W3024657687 cites W1204135804 @default.
- W3024657687 cites W1964560722 @default.
- W3024657687 cites W1979272419 @default.
- W3024657687 cites W1989864652 @default.
- W3024657687 cites W1993456074 @default.
- W3024657687 cites W2004330060 @default.
- W3024657687 cites W2008816730 @default.
- W3024657687 cites W2012707371 @default.
- W3024657687 cites W2030642623 @default.
- W3024657687 cites W2069081417 @default.
- W3024657687 cites W2070179990 @default.
- W3024657687 cites W2078171000 @default.
- W3024657687 cites W2082695261 @default.
- W3024657687 cites W2092412094 @default.
- W3024657687 cites W2093370261 @default.
- W3024657687 cites W2153975063 @default.
- W3024657687 cites W2155143412 @default.
- W3024657687 cites W2158573737 @default.
- W3024657687 cites W2159814293 @default.
- W3024657687 cites W2170241600 @default.
- W3024657687 cites W2206877308 @default.
- W3024657687 cites W2277944030 @default.
- W3024657687 cites W2419215130 @default.
- W3024657687 cites W2513817244 @default.
- W3024657687 cites W2556131833 @default.
- W3024657687 cites W2618944508 @default.
- W3024657687 cites W2620012113 @default.
- W3024657687 cites W2767148458 @default.
- W3024657687 cites W2785651841 @default.
- W3024657687 cites W2787223728 @default.
- W3024657687 cites W2897419987 @default.
- W3024657687 cites W2913943085 @default.
- W3024657687 cites W2973106552 @default.
- W3024657687 cites W2973129350 @default.
- W3024657687 cites W2799579307 @default.
- W3024657687 doi "https://doi.org/10.3390/cancers12051212" @default.
- W3024657687 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7281163" @default.
- W3024657687 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32408544" @default.
- W3024657687 hasPublicationYear "2020" @default.
- W3024657687 type Work @default.
- W3024657687 sameAs 3024657687 @default.
- W3024657687 citedByCount "10" @default.
- W3024657687 countsByYear W30246576872021 @default.
- W3024657687 countsByYear W30246576872022 @default.
- W3024657687 countsByYear W30246576872023 @default.
- W3024657687 crossrefType "journal-article" @default.
- W3024657687 hasAuthorship W3024657687A5028959139 @default.
- W3024657687 hasAuthorship W3024657687A5034681222 @default.
- W3024657687 hasAuthorship W3024657687A5069645890 @default.
- W3024657687 hasAuthorship W3024657687A5083062404 @default.
- W3024657687 hasBestOaLocation W30246576871 @default.
- W3024657687 hasConcept C120665830 @default.
- W3024657687 hasConcept C121332964 @default.
- W3024657687 hasConcept C121608353 @default.
- W3024657687 hasConcept C136229726 @default.
- W3024657687 hasConcept C153180895 @default.
- W3024657687 hasConcept C154945302 @default.
- W3024657687 hasConcept C20198109 @default.
- W3024657687 hasConcept C2908647359 @default.
- W3024657687 hasConcept C2994423619 @default.
- W3024657687 hasConcept C41008148 @default.
- W3024657687 hasConcept C530470458 @default.
- W3024657687 hasConcept C54355233 @default.
- W3024657687 hasConcept C71924100 @default.
- W3024657687 hasConcept C81363708 @default.
- W3024657687 hasConcept C86803240 @default.
- W3024657687 hasConcept C96232424 @default.
- W3024657687 hasConcept C99454951 @default.
- W3024657687 hasConceptScore W3024657687C120665830 @default.
- W3024657687 hasConceptScore W3024657687C121332964 @default.
- W3024657687 hasConceptScore W3024657687C121608353 @default.
- W3024657687 hasConceptScore W3024657687C136229726 @default.
- W3024657687 hasConceptScore W3024657687C153180895 @default.
- W3024657687 hasConceptScore W3024657687C154945302 @default.
- W3024657687 hasConceptScore W3024657687C20198109 @default.
- W3024657687 hasConceptScore W3024657687C2908647359 @default.
- W3024657687 hasConceptScore W3024657687C2994423619 @default.
- W3024657687 hasConceptScore W3024657687C41008148 @default.
- W3024657687 hasConceptScore W3024657687C530470458 @default.
- W3024657687 hasConceptScore W3024657687C54355233 @default.
- W3024657687 hasConceptScore W3024657687C71924100 @default.
- W3024657687 hasConceptScore W3024657687C81363708 @default.
- W3024657687 hasConceptScore W3024657687C86803240 @default.
- W3024657687 hasConceptScore W3024657687C96232424 @default.
- W3024657687 hasConceptScore W3024657687C99454951 @default.
- W3024657687 hasFunder F4320322120 @default.
- W3024657687 hasFunder F4320328359 @default.
- W3024657687 hasIssue "5" @default.
- W3024657687 hasLocation W30246576871 @default.